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Abstract
High-throughput genotyping and sequencing has revolutionized animal breeding by provid-
ing access to vast amounts of genomic data to facilitate precise selection for desirable traits. 
This shift from traditional methods to genomic selection provides dense marker information 
for predicting genetic variants. However, the success of genomic selection heavily depends 
on the accuracy and quality of the genomic data. Inaccurate or low-quality data can lead to 
flawed predictions, compromising breeding programs and reducing genetic gains. There-
fore, stringent quality control (QC) measures are essential at every stage of data processing. 
QC in genomic data involves managing single nucleotide polymorphism (SNP) quality, as-
sessing call rates, and filtering based on minor allele frequency (MAF) and Hardy-Weinberg 
equilibrium (HWE). High-quality SNP data is crucial because genotyping errors can bias the 
estimates of breeding values. Cost-effective low-density genotyping platforms often require 
imputation to deduce missing genotypes. QC is vital for genomic selection, genome-wide 
association studies (GWAS), and population genetics analyses because it ensures data ac-
curacy and reliability. This paper reviews QC strategies for genomic data and emphasizes 
their applications in animal breeding programs. By examining various QC tools and methods, 
this review highlights the importance of data integrity in achieving successful outcomes in ge-
nomic selection, GWAS, and population analyses. Furthermore, this review covers the critical 
role of robust QC measures in enhancing the reliability of genomic predictions and advancing 
animal breeding practices.
Keywords:  Animal breeding, Genomic selection, Quality control, Single nucleotide polymorphism, 

Genome-wide association studies

INTRODUCTION
The rapid evolution of genomic technologies has transformed the landscape of animal breeding. High-
throughput genotyping and sequencing provides breeders with access to vast amounts of genomic data 
and enables the precise selection of desirable traits [1]. These advancements have shifted traditional 
breeding methods to genomic selection, which leverages dense marker information to predict the 
genetic variants of individuals [2]. However, the success of genomic selection depends heavily on the 
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accuracy and quality of the genomic data. Inaccurate or low-quality data can lead to inaccurate 
predictions that can compromise breeding programs and reduce their genetic gains [3]. Therefore, 
to ensure reliable predictions and maximize the potential of genomic selection, it is essential to 
implement stringent quality control (QC) measures at every stage of data processing.

Genomic data QC has several key components including the management of single nucleotide 
polymorphism (SNP) quality, the assessment of call rates, and filtering based on minor allele 
frequency (MAF) and Hardy-Weinberg equilibrium (HWE) [4]. High-quality SNP data is 
indispensable because errors in genotyping can lead to biased estimates of breeding values, 
which decreases the effectiveness of selection strategies [5]. Moreover, cost-effective low-density 
genotyping platforms often suffer from incomplete marker data so it is necessary to use imputation 
to deduce the missing genotypes [6].

QC processes are crucial for genomic selection, genome-wide association studies (GWAS), 
and population genetics analyses. These processes help ensure that the genomic data is accurate, 
reliable, and free from biases introduced by genotyping errors, population stratification, or other 
confounding factors [7,8]. This paper reviews QC strategies for genomic data and their applications 
in animal breeding programs. By examining various QC tools and methods, this paper aims to 
show the critical role that data integrity plays in achieving successful outcomes in genomic selection, 
GWAS, and population analyses [4,5].

GENOTYPING METHODS
Whole-genome sequencing (WGS)
WGS is a comprehensive method for analyzing the entire genome. Due to the decreased cost of 
sequencing and the ability to produce large amounts of genomic data, WGS has become a powerful 
tool for genomic research. SNP calling from WGS genomic data involves a series of critical steps 
to ensure accurate identification of genetic variants. The process starts with raw data preprocessing, 
where tools like FastQC evaluate the read quality [9]. This step is followed by trimming to remove 
adapters and low-quality bases by using either Trimmomatic or Cutadapt [10,11]. 

The cleaned reads are then aligned to a reference genome with BWA-MEM or Bowtie2 to 
generate SAM/BAM files [12,13]. These files are subsequently sorted, indexed, and processed to 
mark polymerase chain reaction (PCR) duplicates with Samtools, while the base quality scores 
are recalibrated using GATK [14,15]. Variant calling is performed using tools such as GATK’s 
HaplotypeCaller, FreeBayes, or Bcftools, which identify SNPs based on differences between the 
sequenced reads and the reference genome [15–17].

In post-calling, variants undergo filtering to remove false positives via GATK’s hard filtering or 
Variant Quality Score Recalibration (VQSR). The filtered SNPs are then annotated with functional 
information using tools like ANNOVAR or SnpEff [18,19]. Quality checks include the use of 
VCFtools for statistical analysis and IGV for visualization, and ensure the reliability of the called 
SNPs [16,20]. Joint genotyping across multiple samples and using population-specific reference 
panels are recommended to enhance the accuracy of SNP calling in WGS.

SNP arrays
SNP arrays have significantly advanced genomic research in animal science by enabling the large-
scale genotyping of SNPs. The development of SNP arrays began in the early 2000s to meet 
the demand for efficient and cost-effective methods to genotype large numbers of SNPs across 
the genome [21,22]. Early arrays marked a significant advancement by allowing simultaneous 
genotyping of thousands of SNPs, facilitating GWAS and the study of genetic variation in 
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populations [21]. 
Over time, these arrays have evolved to include higher-density SNPs to improve coverage and 

accuracy, as seen in the Illumina BovineSNP50 array which has become a standard tool in cattle 
genomics [23,24]. Today, SNP arrays are essential for selecting desirable traits, estimating genetic 
merit, and managing inbreeding in animal breeding [1,2]. QC of SNP array data is crucial for 
ensuring accurate and reliable results, and involves assessing call rates, filtering based on MAF, and 
checking for HWE [4]. Tools such as PLINK and GenomeStudio are commonly used in these 
QC processes [5,25].

QC IN ANIMAL GENOMICS
Minor allele frequency (MAF)
MAF is a key metric in genetic studies. It represents the frequency at which the less common 
allele occurs in a given population. MAF is important for identifying rare variants which may not 
significantly contribute to overall genetic variation but can be crucial in specific contexts. MAF is 
calculated by determining the frequency of both alleles at a locus and taking the minimum of these 
two values. For example, if allele A has a frequency of 0.8 and allele a has a frequency of 0.2, the 
MAF would be 0.2. SNPs with very low MAFs, typically below 0.01 or 0.05, are often excluded 
from analyses because they may represent sequencing errors or lack statistical power in association 
studies [5]. 

Tools like PLINK and VCFtools [5,16] are widely used to calculate MAF, with PLINK’s --freq 
command being particularly popular [4]. In animal breeding, many researchers set threshold values 
for MAF to balance the need for sufficient variation while minimizing noise from rare variants. 
Typically, MAF thresholds in animal breeding studies range from 0.01 to 0.05 depending on the 
study’s objectives and the population structure being analyzed. For instance, a study on dairy cattle 
by Pryce et al. [26] and Kim et al. [27] sed a MAF threshold of 0.01 to ensure that the SNPs 
included were sufficiently informative for genomic predictions while also minimizing the influence 
of rare variants that might lead to spurious associations.

Call rate
Call rate is another critical QC metric that measures the proportion of successfully genotyped 
samples for a specific SNP. A high call rate indicates that a SNP has been consistently detected 
across the sample population, while a low call rate may suggest issues with the genotyping process, 
such as poor quality or technical errors [7]. 

The call rate is calculated by dividing the number of successful genotype calls for a SNP by the 
total number of samples, then multiplying by 100 to express it as a percentage. 

For instance, if 95 out of 100 samples have a successful genotype call for a SNP, the call rate 
would be 95% [4]. Normally, markers with a call rate less than 95% are removed, though other 
studies have set more stringent or lenient thresholds depending on the study design and objectives. 
For example, some studies have removed markers with a call rate below 99% to ensure extremely 
high data quality [28], while others have used a more relaxed threshold of 90% when working with 
larger datasets[29]. 

Tools like PLINK, SNP & Variation Suite (SVS), and GenomeStudio are widely used for 

( ) 100
( )

 Number of successfully genotyped markers or samplesCall Rate
 Total number of markers or samples
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calculating and filtering SNPs based on call rates because they offer robust functionalities for QC in 
genomic studies. PLINK is particularly popular due to its comprehensive command-line interface, 
where the --missing command calculates call rates at both the marker and sample levels, allowing 
researchers to easily filter out SNPs and samples that fall below the desired threshold [5]. SVS 
offers a user-friendly graphical interface and integrates various statistical tools, making it ideal for 
complex datasets and large-scale studies [30]. GenomeStudio by Illumina is another powerful tool 
specifically designed for managing and analyzing genotyping data with features for calculating call 
rates, identifying low-quality markers, and visualizing data for further inspection [25]. These tools 
are essential for ensuring that only high-quality data is used in subsequent analyses to improve the 
reliability of genomic outcomes.

Hardy-Weinberg equilibrium
HWE is a fundamental principle in population genetics. It states that allele and genotype 
frequencies in a population will remain constant from generation to generation in the absence of 
evolutionary influences [31]. Testing for HWE is an important QC step because deviations from 
this equilibrium can indicate issues such as genotyping errors, population stratification, or selection 
pressures [32]. To test for HWE, the observed genotype frequencies are compared to the expected 
frequencies under equilibrium conditions. For a biallelic SNP with alleles A and a, the expected 
genotype frequencies are p2 for AA, 2pq for Aa, and q2 for aa, where p and q represent the allele 
frequencies [33]. A chi-square test is commonly used to assess whether the differences between the 
observed and expected frequencies are statistically significant. Tools like PLINK and VCFtools are 
used to perform HWE tests [34]. SNPs that show significant deviation from HWE, typically with 
a p-value less than 0.001, are often excluded from analyses to prevent biases that could arise from 
genotyping errors or other confounding factors [4]. These QC metrics are foundational for ensuring 
high-quality genotypic data, forming the basis for accurate and reliable analyses in applications 
such as population analysis, GWAS, and genomic selection. Table 1 provides a summary of tools 
commonly used for QC steps, offering researchers practical options to streamline their workflows 
and enhance data integrity.

APPLICATION
Population analysis
Population analysis is invaluable for genomic studies in animal science because it enables researchers 
to assess the genetic structure, diversity, and evolutionary dynamics within and between populations. 
Accurately characterizing population structures is crucial for identifying subpopulations, measuring 
inbreeding levels, and understanding the genetic background of breeding populations, all of which 
are essential for maintaining genetic diversity and improving selection outcomes [35]. Tools 
such as PLINK, ADMIXTURE, and STRUCTURE are commonly employed to detect key 
characteristics for understanding the genetic landscape of animal populations, such as population 
stratification, admixture, and genetic differentiation [5,36]. For example, ADMIXTURE provides 
estimates of individual ancestry proportions. These estimates allow researchers to detect mixed 
genetic backgrounds that could influence trait analysis [36]. QC measures, such as filtering based 
on MAF, HWE, and genotyping call rates ensure the data used for population analysis is reliable 
[4,37]. MAF filtering helps exclude rare alleles that may introduce noise or result from genotyping 
errors [5]. Similarly, HWE filtering removes SNPs that deviate from expected frequencies due 
to selection or population substructures in order to prevent potential biases in the analysis [37]. 
Proper QC improves the accuracy of population structure analyses and mitigates the risk of 
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confounding in subsequent analyses such as GWAS and genomic selection [4]. By accurately 
characterizing population structures, researchers can identify unique genetic markers and enhance 
their understanding of trait inheritance, and then design breeding strategies that optimize genetic 
gain and preserve diversity to support sustainable livestock production [35,36].

GWAS
GWAS are powerful tools for identifying genetic variants associated with complex traits in animal 
breeding such as growth traits, disease resistance, reproductive traits, and carcass traits [2,4]. The 
reliability of GWAS findings hinges on rigorous QC procedures that ensure high-quality data 
throughout the process. This begins with careful study design and population selection, where 
potential confounders like population stratification are addressed through methods such as 
Principal Component Analysis (PCA) and linear mixed models to correct for genetic structure 
within the population [38]. Phenotype data must be accurately collected and screened for outliers 
to minimize noise. Genotype data undergoes thorough QC, including filtering SNPs based on call 
rates, MAF, and deviations from HWE [4,5]. For instance, SNPs with low call rates are excluded 
to avoid unreliable data that could lead to false-positive associations, while MAF filtering focuses 
the analysis on common variants that are more likely to have sufficient statistical power to detect 
true associations. HWE filtering is employed to remove SNPs that significantly deviate from 
expected allele frequencies because such deviations may indicate genotyping errors or underlying 
selection pressures [5]. To reduce redundancy and computational burden, linkage disequilibrium 
(LD) pruning is performed and missing genotypes are often imputed via reference panels using 
Fimpute or BEAGLE [39,40]. Tools like PLINK and GEMMA are widely used to implement 
QC measures and conduct association tests because they offer a robust framework for analyzing 
large genomic datasets [4]. Statistical analysis in GWAS is carried out using models appropriate for 

Table 1. Tool list for quality control processes
Tools Function Reference

GEMMA Application of linear mixed models and related models to GWAS [4]

PLINK Run association analyses and perform QC and regression steps [5]

FastQC Quality control checks on raw sequence data [9]

Trimmomatic Trim and crop FASTQ data [10]

Cutadapt finds and removes adapter sequences, primers, poly-A tails [11]

BWA-MEM produce multiple primary alignments for different part of a query sequence [12]

Bowtie2 aligning sequencing reads to long reference sequences [13]

Samtools Manipulate alignments in the SAM, BAM, and CRAM formats [14]

GATK Variant calling using sequencing data [15]

VCFtools Summarize, filter out, convert data into other file formats [16]

FreeBayes Bayesian genetic variant detector designed to fine SNPs [17]

SnpEff Annotation on genetic variants and predicts their effects on genes [18]

ANNOVAR Generate gene-based annotation [19]

IGV Visualization tool to simultaneously integrate and anlyze multiple types of genomic data [20]

GenomeStudio Normalize, cluster, and call genotypes [25]

SVS Perform analyses and visualizations on genomic and phenotypic data [33]

BEAGLE Genotype calling, phasing, and genotype imputation [39]

Fimpute Haplotype estimation or phasing and genotype imputation [40]

Impute2 Genotype imputation and haplotype phasing [47]

Minimac performs imputation with pre-phased haplotypes [48]
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the trait under study, and corrections for multiple testing to mitigate the risk of false positives and 
meta-analysis may be employed when integrating results from multiple studies [41]. To ensure the 
robustness and high accuracy of the GWAS models, a 5-fold cross-validation is often used. In this 
method, the datasets are divided into five subsets. The model is iteratively trained on four subsets 
and tested on the remaining one to help validate the model’s accuracy and mitigate overfitting [42]. 
The results from GWAS offer valuable genetic variants for traits which can be targeted in marker-
assisted selection and genomic selection programs. Genomic selection aims to ultimately improve 
the genetic merit of livestock populations [2]. The Fig. 1 summarizes the genotype QC workflow, 
with an emphasis on data preparation, QC steps, and their applications.

Genomic selection
Genomic selection (GS) allows for the selection of animals based on SNP markers [43]. With 
the introduction of GS, animal breeding has dramatically advanced by overcoming the limitations 
of traditional selection methods like best linear unbiased prediction (BLUP) and marker-assisted 
selection [43,44]. GS relies on dense SNP data to estimate genomic breeding values, which are 
used to predict an individual’s genetic potential for economically important traits [2]. The accuracy 
of GS models is dependent upon the quality of the genomic data and the reliability of GS models 
can be enhance significantly by the inclusion of imputation methods to handle missing or low-
density SNP data [45]. Imputation is beneficial in low-density platforms because it allows for the 
cost-effective use of genotyping while still leveraging the power of high-density SNP information. 
Imputation increases the accuracy of genomic predictions by inferring missing genotypes in order to 
improve the reliability of estimated breeding values even with fewer markers [6]. Several imputation 
tools, including FImpute [40], Beagle [39], Impute2 [46], and Minimac [47] are widely used in 
animal breeding to enhance the accuracy of GS models. Therefore, strict QC is essential [48]. QC 
methods, such as filtering SNPs based on call rates, MAF, and HWE, is critical to ensuring that 
the data is vigorous and reliable. High call rates are important because missing data can introduce 

Fig. 1. Overall flowchart from data preparation to application in animal breeding.
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bias and reduce the reliability of genomic estimated breeding values. Similarly, excluding SNPs 
with low MAF helps to avoid the noise associated with rare variants that may have little impact on 
prediction accuracy. Ensuring that SNPs conform to HWE expectations also prevents the inclusion 
of markers affected by selection, mutation, or other factors that could bias the GS models [4,5]. 
Advanced computational tools, such as genomic best linear unbiased prediction (GBLUP) and 
single-step BLUP (ssBLUP), and Bayesian methods (BayesA, BayesB, BayesC) integrate SNP 
effects across the genome to enhance the precision of breeding value predictions [49,50]. By using 
high-quality genomic data, GS enables breeders to make more accurate decisions that lead to faster 
genetic gains and the improvement of traits such as milk yield, growth rate, and carcass weight in 
livestock. This approach not only enhances the efficiency of breeding programs but also contributes 
to the long-term sustainability and productivity of animal populations [35].

CONCLUSION
High-throughput genotyping and sequencing has significantly advanced the field of animal 
breeding by enabling precise selection for desirable traits. However, the success of GS hinges on 
the accuracy and quality of the genomic data used. Rigorous QC measures are essential to ensure 
data integrity. These measures include SNP quality management, call rate assessment, and filtering 
based on MAF and HWE. These QC processes are crucial for GS, GWAS, and population 
genetics analyses. Implementing stringent QC strategies enhances the reliability of genomic 
predictions, which improves breeding programs and genetic gains. By maintaining high standards 
of data quality, researchers and breeders can make informed decisions that lead to sustainable and 
productive advancements in animal breeding.
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