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Abstract
Porcine oocytes undergo in vitro maturation (IVM) for 42–44 h. During this period, most oo-
cytes proceed to metaphase and then to pro-metaphase if the nucleus has sufficiently ma-
tured. Forty-four hours is sufficient for oocyte nuclear maturation but not for full maturation of 
the oocyte cytoplasm. This study investigated the influences of extension of the IVM duration 
with rapamycin treatment on molecular maturation factors. The phospho-p44/42 mitogen-ac-
tivated protein kinase (MAPK) level was enhanced in comparison with the total p44/42 MAPK 
level after 52 h of IVM. Oocytes were treated with and without 10 μM rapamycin (10 R and 0 R, 
respectively) and examined after 52 h of IVM, whereas control oocytes were examined after 
44 h of IVM. Phospho-p44/42 MAPK activity was upregulated the 10 R and 0 R oocytes than 
in control oocytes. The expression levels of maternal genes were highest in 10 R oocytes 
and were higher in 0 R oocytes than in control oocytes. Reactive oxygen species (ROS) ac-
tivity was dramatically increased in 0 R oocytes but was similar in 10 R and control oocytes. 
The 10 R group exhibited an increased embryo development rate, a higher total cell number 
per blastocyst, and decreased DNA fragmentation. The mRNA level of development-relat-
ed (POU5F1 and NANOG) mRNA, oocyte-apoptotic (BCL2L1) genes were highest in 10 R 
blastocysts. These results suggest that prolonged IVM duration with rapamycin treatment 
represses ROS production and increases expression of molecular maturation factors. There-
fore, this is a good strategy to enhance the developmental capacity in porcine oocytes.
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INTRODUCTION
In vitro maturation (IVM) is essential for better understanding of process of oocyte development 
and maturation in various species, including pigs [1]. IVM induces meiotic maturation from 
prophase I to metaphase II (MII) in vitro. Oocytes generated by IVM are used to produce high-
quality embryos upon in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT). 
Modulation of follicle size [2,3], medium composition [4,5], culture temperature [6,7], antioxidants 
[8,9] and cumulus features [10] can enhance the quality of porcine oocytes in IVM. Specifically, 
supplementation of antioxidant to IVM medium improved embryo quality, reduced early 
apoptosis levels, increased glutathione (GSH) content and reduced reactive oxygen species (ROS) 
accumulation, promoting embryonic development [11]. However, further research is needed to 
improve IVM of porcine oocytes.

Porcine oocytes, IVF embryos, and parthenotes are matured for 42–44 h and SCNT oocytes are 
matured for 36–38 h in vitro. During this period, most oocytes proceed to metaphase and then to 
pro-metaphase if the nucleus has sufficiently matured [12,13]. While in meiotic arrest, the nuclear 
status and structural morphology of matured oocytes remain unchanged. This amount of time is 
sufficient for oocyte nuclear maturation but not for full maturation of the oocyte cytoplasm [14]. 
Many studies have been conducted on different maturation starts to acquire oocyte capacitation, 
which plays an important role in oocytes reaching MII [15–17]. Lin et al. extended the duration of 
IVM to 52 h in order to increase the poor-quality oocytes and performed treatment with melatonin 
to inhibit ROS production, apoptosis, and DNA damage [15]. However, oocyte maturation for 
an excessive amount of time causes cytoplasmic changes that negatively affect oocyte quality 
and increase the risk of spontaneous oocyte activation [18,19] and subsequent aberrant cleavage 
characterized by unequally sized blastomeres [19,20]. It is possible to prevent, delay, or reverse these 
cellular and molecular abnormalities [21].

Rapamycin has antifungal and immunosuppressant properties [22] and binds to FK506-binding 
protein 12 to form a complex that prevents the kinase activity and function of mTOR [23]. mTOR 
activity inhibition by rapamycin affects establishment of the cortical granule-free zone and actin cap, 
and disrupts alignment of the surrounding spindle and division during oocyte meiotic maturation 
[24]. Administration of rapamycin during IVM of porcine oocytes dose-dependently enhances 
cytoplasmic and nuclear maturation by inducing autophagy [25]. Aged porcine oocytes treated 
with 10 μM rapamycin enhances blastocyst quality by regulating the mitochondrial distribution, 
autophagy, apoptotic cells, and mTOR signaling [26]. Supplementation of tissue culture medium 
(TCM)-199 with 0.5 μM rapamycin increases expression of matrix metallopeptidase in the 
trophoblast and inner cell mass (ICM), while it inhibits apoptosis [27]. Therefore, in our study, 
we extended the IVM duration to fully mature porcine oocytes and performed rapamycin 
treatment to reduce apoptosis, ROS production, and oocyte aging. This study investigated the 
impacts of rapamycin treatment during prolonged IVM on molecular maturation factors and the 
developmental capacity of porcine oocytes in vitro. Activated mitogen-activated protein kinase 
(MAPK) and ROS levels were modulated upon extension of the IVM duration with rapamycin 
treatment. The in vitro development rate, total cell numbers, and level of apoptosis were determined 
using blastocysts generated from these oocytes.

MATERIALS AND METHODS
Chemicals and reagents
Unless otherwise specified, all chemicals and reagents utilized in this study were procured from 
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Merck (St. Louis, MO, USA). The oocytes and embryos were maintained in CO2 incubator at 
38.8℃ in a humidified atmosphere containing 5% CO2 and 95% air.

In vitro maturation of rapamycin-treated porcine oocytes
Porcine ovaries from pre-pubertal sows were obtained from a provincial slaughterhouse. We used an 
18-gauge needle attached to 10mL syringe to aspirate follicles measuring 2-8mm from the follicles, 
and selected cumulus-oocyte-complexes (COCs). After washing in TCM-199-hydroxyethyl 
piperazine ethane sulfonicacid (HEPES) supplemented with 0.1% (w/v) bovine serum albumin 
(BSA), a group of approximately 50 selected COCs were cultured in 500 μL of TCM-199 (M-
199, Gibco, Grand Island, NY, USA) containing Earle’s salts, 0.57 mM cysteine, 10% (v/v) porcine 
follicular fluid, 10 ng/mL epidermal growth (E-9644), 0.5 μg/mL follicle-stimulating hormone (F-
2293), and 0.5 μg/mL luteinizing hormone (L-5269). The maturation process was conducted for 
44 h, with the COCs placed beneath a layer of mineral oil. Thereafter, MII oocytes were transferred 
into TCM-199 supplemented with 0 or 10 μM rapamycin (R-8781) and incubated for 8 h (total 
IVM duration of 52 h). According to our previous studies, the concentration of rapamycin was set 
at the 10 μM [26].

Parthenogenetic activation and embryo culture
Subsequent IVM, adherent cumulus cells were eliminated using 0.1% (w/v) hyaluronidase. 
Collected oocytes were parthenogenetically activated by incubation in 5 μM Ca2+ ionomycin 
(Merck) for 5 min. Following culture in porcine zygote medium-5 (PZM-5) with 7.5 μg/mL 
cytochalasin B (Merck) for 4 h, the oocytes were washed with PZM-5 containing 0.4% (w/
v) BSA. Following 6 days of incubation in the same medium, the oocytes were washed with 
Dulbecco’s phosphate-buffered saline (PBS). Finally, oocytes and embryos were fixed in 3.7% 
(w/v) paraformaldehyde for 20 min at 4℃ or they were snap freezing using liquid nitrogen and 
subsequently stored at −70℃.

Detection of intracellular reactive oxygen species activity
Intracellular ROS activity in denuded oocytes were quantified using the 2,7-dichlorofluorescein 
protocol described previously [26]. Concisely, oocytes (25–30 oocytes per sample, four replicates) 
were cultured in 100 μM 2’,7’-dichlorodihydrofluorescein-diacetate (DCHF-DA) for 20 min, 
washed five times with PZM-5, and promptly observed under epifluorescence microscopy 
(Olympus, Tokyo, Japan) with an ultraviolet filter (450–490 nm and 515–565 nm). A microscope-
mounted digital camera (Nikon, Tokyo, Japan) was used to capture grayscale images, and ImageJ 
software (NIH, Bethesda, MD, USA) was employed to acquire mean grayscale values. Image 
analysis was conducted with the Adobe Photoshop CS6 software package (version 13, Adobe 
Systems, San Jose, CA, USA) by quantitating the average pixel intensities in various regions of the 
raw image. Before statistical analysis, background fluorescence values were calculated by subtracting 
them from the final values.

Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling assay
Blastocysts on day 6 were washed with PBS (pH 7.4) with 1 mg/mL PBS/ polyvinylpyrrolidone 
(PVP). After fixing with 3.7% formaldehyde prepared with PBS overnight at 4℃. Following 
washing with PBS/PVP, the oocytes were subsequently permeabilized by culture in the dark for 
1 h with 0.3% Triton X-100 at room temperature. After washing with PBS/PVP, the blastocysts 
were cultured at 37℃ for 1 h in fluorescein-conjugated dUTP and terminal deoxynucleotidyl 
transferase using the In Situ Cell Death Detection Kit (Roche, Mannheim, Germany). Following 
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counterstaining with Hoechst 33342 in the dark for 30 min at 37℃ to label the nuclei, the 
samples were washed with PBS/PVP and then carefully set on glass slides. The experiment was 
independently repeated three times.

Real-time quantitative polymerase chain reaction
mRNA extraction from oocytes at the MII stage and in vitro-cultured embryos at day 6 (20 
embryos per sample, three replicates) by a Dynabeads mRNA Direct Kit (DynalAsa, Oslo, 
Norway). SuperScript™ III reverse transcriptase (Invitrogen, Grand Island, NY, USA) and oligo 
(dT)12–18 primers were used to synthesize first-strand cDNA. Real-time quantitative PCR was 
conducted on a Step One Plus Real-time PCR system (Applied Biosystems, Warrington, UK) 
using the primers specified in Table 1. The total reaction volume for the final PCR consisted of 
20 μL, including SYBR Green PCR Master Mix (Applied Biosystems). As follows were the 
amplification conditions: 10 min at 94℃, followed by 39 cycles of denaturation for 30 sec at 94℃, 
annealing for 30 sec at 55℃, and extension for 55 sec at 72℃, and a final extension for 5 min at 
72℃. Relative mRNA expression levels were determined according to the 2−∆∆Ct protocol [28] by 
normalization to GAPDH.

Western blot analysis
The experimental assay followed a previously described protocol [24]. For protein extraction, 20 μL 
of 1× sodium dodecyl sulfate (SDS) sample buffer containing 5 mM Tris-HCl, pH 6.8 at 25℃, 2% 
(w/v) SDS, 10% (v/v) glycerol, 50 mM dithiothreitol (DTT), and 0.01% (w/v) bromophenol blue 
or phenol red was added to oocytes (20 oocytes per sample, three replicates), and the samples were 
boiled for 5 min at 95℃. Subsequently, proteins were separated by electrophoresis on a 5%–12% 
Tris-SDS-polyacrylamide gel electrophoresis (PAGE) gel for 1.5 h at 80–100 V. Thereafter, proteins 
were electrophoretically transferred to a nitrocellulose membrane (Hybond-ECL, Amersham, 

Table 1. Primers used for real-time PCR
Gene GenBank accession no. Primer sequence Annealing temperature (℃) Product size (bp)

GAPDH AF017079 F: GGGCATGAACCATGAGAAGT
R: AAGCAGGGATGATGTTCTGG

60 230

BMP15 NM_001005155 F: CCCTCGGGTACTACACTATG
R: GGCTGGGCAATCATATCC

60 192

GDF9 AY_626786 F: GAGCTCAGGACACTCTAAGCT
R: CTTCTCGTGGATGATGTTCTG

60 272

MOS NM_001113219 F: TGGGAAGAAACTGGAGGACA
R: TTCGGGTCAGCCCAGGTTCA

60 121

POU5F1 NM_001113060 F: AGTGAGAGGCAACCTGGAGA
R: TCGTTGCGAATAGTCACTGC

60 166

NANOG DQ447201.1 F: GAACTTTCCAACATCCTGAA
R: TTTCTGCCACCTCTTACATT

55 87

SOX2 EU503117 F: GCCCTGCAGTACAACTCCAT
R: GCTGATCATGTCCCGTAGGT

60 216

CDX2 AM778830 F: AGCCAAGTGAAAACCAGGAC
R: TGCGGTTCTGAAACCAGATT

60 178

BCL2L1 AF216205 F: ACTGAATCAGAAGCGGAAAC
R: AAAGCTCTGATACGCTGTCC

60 249

FAS AJ001202 F: AAGTTCCCAAGCAAGGGATT
R: AATTTCCCATTGTGGAGCAG

60 207

CASP3 NM_214131.1 F: GAGGCAGACTTCTTGTATGC
R: ACAAAGTGACTGGATGAACC

55 93

PCR, polymerase chain reaction; bp, base pair; F, forward; R, reverse.
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Buckinghamshire, UK) at 300 mA for 2 h using transfer buffer (25 mM Tris, 200 mM glycine, and 
20% methanol, pH 8.5). After being blocked with 5% (w/v) skim milk prepared in PBS for 1 h, the 
membranes were cultured with an anti-Cdc2 p34, anti-p44/42 MAPK, or anti-phospho-p44/42 
MAPK antibody (1:500; Cell Signaling Technology, Danvers, MA, USA) in blocking solution (1× 
Tris-buffered saline containing 0.1% (v/v) Tween® 20 and 5% [w/v] skim milk) for at least 2 h. 
After washing with TBST (20 mM Tris-HCl, pH 7.5, 250 mM NaCl, and 0.1% [v/v] Tween® 20), 
the membranes were cultured with anti-rabbit IgG-horseradish peroxidase (1:2000, Cell Signaling 
Technology) with blocking solution for 1 h. Following washing with TBST, binding of antibody 
was analyzed with chemiluminescence luminol reagent (Invitrogen).

Statistical analysis
The Statistical Analysis System (SAS User’s Guide; Statistical Analysis System, Cary, NC, USA) 
was employed to analyze data using the general linear model procedure. Significant differences were 
determined using Tukey’s multiple range test. Relative gene expression levels were compared by the 
Student’s t-test. Differences were regarded as biologically significant at p < 0.05 and p < 0.01.

RESULTS
Rapamycin treatment increases the levels of maturation factors in porcine oocytes 
To explore the influence of extension of the IVM duration on molecular maturation of porcine 
oocytes, we examined expression of maturation/M phase-promoting factor (MPF), activated 
MAPK, and maternal genes (Figs. 1 and 2). We monitored total and phospho-p44/42 MAPK 
levels at 2 h intervals after 42–52 h of IVM (Fig. 1A). The phospho-p44/42 MAPK level was 
normalized against the total MAPK level at 44 h (set to 1). The phospho-p44/42 MAPK level 
was upregulated in comparison with the total MAPK level at 52 h (42 h, 1.02 ± 0.09; 46 h, 0.94 ± 
0.07; 48 h, 0.82 ± 0.07; 50 h, 0.90 ± 0.11; and 52 h, 1.36 ± 0.20; p < 0.05 and p < 0.01; Fig. 1B). The 
phospho-p44/42 MAPK level was higher at 52 h than at the other time points (Figs. 1A and 1B).
Oocytes were supplemented with and without 10 μM rapamycin and examined after 52 h of IVM 
(10 R and 0 R, respectively), whereas control oocytes were examined subsequent 44 h of IVM. 
The mRNA level of the maternal genes BMP15, GDF9, and MOS was analyzed using real-time 
quantitative PCR (Fig. 2A). The mRNA level of these genes was upregulated in 10 R oocytes 
compared to control and 0 R oocytes (p < 0.05). There was an increase (p < 0.01) in the levels of 
BMP15 and GDF9 in 10 R oocytes compared with control oocytes. We monitored the levels of 
Cdc2 p34 and phospho-p44/42 MAPK (Fig. 2B). Expression of Cdc p34 and phospho-p44/42 
MAPK was normalized to the total MAPK in each group (set to 1, Figs. 2C and 2D). The levels of 
Cdc2 p34 and phospho-p44/42 MAPK were higher in 10 R oocytes (p < 0.01) than in control and 
0 R oocytes (0 R, 1.05 ± 0.11 and 1.14 ± 0.01, respectively; and 10 R, 1.21 ± 0.02 and 1.29 ± 0.06, 
respectively; Figs. 2C and 2D). 

Rapamycin treatment reduces reactive oxygen species activity in porcine oocytes
ROS activity was analyzed in control, 0 R, and 10 R groups using dichloro-dihydro-fluorescein 
diacetate (DCHFDA). ROS activity was lower in 10 R group (p < 0.01) compared to 0 R oocytes 
and was similar to that in control oocytes (control, 32.3±3.6; 0 R, 65.1±5.9; and 10 R, 28.9±7.6; 
Figs. 3A and 3B). Treatment with 10 μM rapamycin enhanced the developmental capacity of 
oocytes aged for 8 h by inhibiting ROS activity.

Rapamycin treatment enhances the developmental capacity of porcine oocytes
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Fig. 1. Levels of maturation factors during the extended in vitro maturation (IVM) of porcine oocytes. 
Western blot analysis of Cdc2 p34, p44/42 mitogen-activated protein kinase (MAPK), and phospho-p44/42 
MAPK (A) and band intensities (B) of Cdc2 p34, p44/42 MAPK, and phospho-p44/42 MAPK in porcine 
oocytes were examined every 2 h after 42–52 h of IVM. The experiment was independently repeated three 
times. Significant differences compared with control oocytes are indicated (a–cp < 0.05 and **p < 0.01). Values 
represent means ± standard error of the mean of independent experiments.

Fig. 2. Effect of rapamycin treatment on molecular maturation factors in porcine oocytes. Maternal 
gene expression (A) and levels of Cdc2 p34, p44/42 MAPK, and phospho-p44/42 MAPK (B) were examined 
in control, 0 R, and 10 R oocytes. Relative levels of Cdc2 p34 (C) and phospho-p44/42 MAPK (D) were 
determined. GAPDH was used as an internal standard. The experiment was independently repeated three 
times. Significant differences compared with control oocytes are indicated (a,bp < 0.05 and **p < 0.01). Values 
represent means ± standard error of the mean of independent experiments.
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Control (n = 400) and 0 R (n = 345) and 10 R (n = 310) groups were matured for 44 and 52 h, 
respectively. The percentage of matured oocytes was no differences among the control, 0 R, and 10 
R groups (86.40 ± 1.92%, 90.30 ± 2.03%, and 91.77 ± 2.86%, respectively; Fig. 4B). After IVM, 
control (n = 345), 0 R (n = 312), and 10 R (n = 284) groups were parthenogenetically activated. 
The morphology and percentage of embryos reaching the 2–4-cell stage showed no significant 
difference among the control, 0 R, and 10 R groups (68.73 ± 5.57%, 56.58 ± 5.10%, and 57.61 ± 
4.60%, respectively; Figs. 4A and 4B). The percentage of blastocyst at day 6 was highest in the 10 R 
group (n = 75, 48.36 ± 7.06%) and lowest in the 0 R group (n = 38, 22.81 ± 4.12%; p < 0.05 or p < 
0.01; Figs. 4A and 4B).

Confirming the influence of rapamycin treatment on blastocyst quality, blastocysts at day 6 in 
the various groups were stained (Fig. 4C). The cell number per blastocyst at day 6 was highest 
in the 10 R group (control, 50 ± 6.92; 0 R, 54 ± 9.29; and 10 R, 76 ± 12.49; p < 0.05; Fig. 4C). 
Reprogramming-related transcription factor genes POU5F1, SOX2, NANOG, and CDX2 
were examined for their expression levels by real-time RT-PCR (Fig. 4D). The 10 R group 
was upregulated (p < 0.05) in POU5F1 and NANOG expression, whereas it did not significant 
difference among the control and 0 R groups. SOX2 expression tended to show a similar pattern, 
although there were not significantly differences among the groups. Expression of CDX2 showed 
no significant difference among the groups.

Rapamycin treatment of porcine oocytes decreases apoptosis in resultant blastocysts
Using the TUNEL assay, individual embryos were assessed for genomic DNA fragmentation (an 
indicator of apoptosis). The percentage of fragmented DNA in the 10 R group (7.08 ± 0.50%) 

Fig. 3. Antioxidant effect of rapamycin treatment during IVM. Images of oocytes stained with DCHFDA in 
rapamycin-untreated 44 h IVM (control), rapamycin-untreated 52 h IVM (0 R), and 10 μM-rapamycin treated 52 
h IVM (10 R) (A) and the fluorescence intensity of DCHFDA (B) were evaluated in metaphase II oocytes in the 
control, 0 R, and 10 R groups. The experiment was independently repeated four times. Significant differences 
compared with control group are indicated (a,bp < 0.05 and **p < 0.01). Values represent means ± standard error 
of the mean of independent experiments. Bar = 200 µm. DCHFDA, dichloro-dihydro-fluorescein diacetate.
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was significantly downregulated (p < 0.05) compared with the 0 R group (13.06 ± 2.24%) and 
was similar to the control group (7.07 ± 1.37%, Fig. 5B). The 10 R group showed significantly 
higher levels of BCL2L1, the anti-apoptotic gene, compared to the 0 R group (p < 0.05), while the 
control group exhibited the highest expression (p < 0.05) (Fig. 5C). The mRNA level of the FAS 
and CASP3, pro-apoptotic genes, tended to be downregulated in the 10 R group, although these 
differences were not significant.

DISCUSSION
Oocyte maturation is a multifaceted process involving both nucleus and cytoplasmic changes. 
An IVM duration of 42 to 44 h is sufficient for nuclear maturation through a mechanism such 
as oocyte capacity, but not sufficient for complete maturation of the cytoplasm [14]. However, 
excessive maturation duration exposes oocytes to increased oxidative stress [29,30].  ROS-induced 
oocyte damage reduces the ability and quality of subsequent embryonic development [31]. This 
study investigated the influences of extension of the IVM duration with rapamycin treatment on 
molecular maturation factors and embryonic development of porcine oocytes.

After 52 h of IVM, the phospho-p44/42 MAPK level was high in comparison with the total 
MAPK level (Figs. 1A and 1B). Our previous study demonstrated that 10 μM rapamycin increases 
blastocyst quality by affecting developmental rate and total cell number and reducing mitochondrial 
distribution, apoptosis, autophagy and ROS activity that regulates mTOR signaling [26]. The 

Fig. 4. Effect of rapamycin treatment on the developmental capacity of porcine oocytes. (A) Morphology 
of embryos at day 2 (a–c) and blastocysts at day 6 (d–f) were examined in the control (a and d), 0 R (b and 
e), and 10 R (c and f) groups. The in vitro development rate (B), total cell number per blastocyst at day 6 (C), 
and relative mRNA expression of the development-related genes POU5F1, SOX2, NANOG, and CDX2 (D) 
were examined in blastocysts in the control, 0 R, and 10 R groups. MII, Metaphase II; GV, Germinal vesicle; 
BL, Blastocyst. The experiment was independently repeated five times (A and B) and three times (C and 
D). Significant differences compared with the control group are indicated (a–cp < 0.05 and **p < 0.01). Values 
represent the means ± standard error of the mean of independent experiments. Bar = 200 µm.
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maternal genes expression levels of BMP15, GDF9, and MOS was higher in 0 R and 10 R oocytes 
than in control oocytes (Fig. 2A). Confirming the effect of rapamycin, levels of Cdc2 p34 and 
phospho-p44/42 MAPK were higher in 10 R oocytes than in control and 0 R oocytes (Figs. 2B, 
2C, and 2D). MAPK and MPF are critical for meiotic molecular maturation of oocytes. Protein 
phosphorylation and dephosphorylation are essential for the meiotic cell cycle of oocytes. MPF and 
MAPK, which are integral components of the key regulatory pathways involved in activation of 
extracellular signal-regulated kinase 1 and 2, are serine/threonine kinases that are phosphorylated 
and subsequent activated by MAPK kinase [32,33]. MPF consists of the catalytic subunit p34/
Cdc2, which possesses serine/threonine kinase activity, and the regulatory subunit cyclin B. 
Activation of MPF is regulated by various mechanisms, including binding of cyclin B to Cdc2, 
phosphorylation of threonine 161, and dephosphorylation of tyrosine 15 and threonine 14 [34]. 
MAPK activity usually peaks in porcine oocytes during IVM for 42–44 h. Many researchers have 
extended the IVM duration to improve oocyte maturity due to supply of insufficient maturation 
factors. The developmental rate reportedly increases when the IVM duration is extended (48–72 
h). Specifically, the developmental rate is increased at 56 h due to maintenance of high MPF 
expression, but cytoplasmic senescence at 72 h decreases the developmental rate and suppresses 
MPF expression [35]. Another study confirmed that the developmental rate is improved by 
extending the IVM duration from 44 h, which is normally used. In the extended culture duration 
of 24 to 52 h, the cleavage rate of porcine oocytes was highest at 48 h as determined through the 
number of cumulus cell layers. [36]. Although that study did not reveal whether this approach 
affects a molecular factor, it showed that long-term culture is more effective for oocyte maturation 
[36]. To induce resumption of meiosis, porcine COCs at the pre-IVM stage were preincubated 
for 12 h [17]. Extension of the total IVM duration to 52 h increases the development rate of IVF 
embryos at the blastocyst stage [17]. Excessive prolongation of oocyte maturation leads to aging, 
and reduced MAPK activity decreases the quality of oocytes [37,38]. The IVM duration of poor-

Fig. 5. Effect of treatment of porcine oocytes with rapamycin on the level of apoptosis in blastocysts. 
Morphology of blastocyst total cell and apoptotic cells (A), DNA fragmentation (B) and relative mRNA expression 
of the apoptosis-related genes BCL2L1, FAS, and CASP3 (C) were examined in blastocysts in the control, 0 R, 
and 10 R groups. The experiment was independently repeated three times. Significant differences compared 
with the control group are indicated (*p < 0.05). Values represent means ± standard error of the mean of 
independent experiments. Bar = 50 µm.
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quality oocytes was previously extended to 52 h, and treatment with the antioxidant melatonin 
improved the IVM rate and expression levels of maturation factors [15]. We previously showed 
that treatment of aged oocytes with rapamycin increases phosphorylated p44/42 MAPK activity 
and mRNA levels of maternal genes compared with untreated aged oocytes [26]. Rapamycin 
activates MPF and MAPK, which reduces oocyte activation susceptibility via inhibition of protein 
kinase A [39]. Therefore, we suggest that rapamycin treatment facilitates molecular maturation by 
preserving the ooplasm of MII oocytes, leading to enhanced transcription of maternal genes. This 
study indicates that extension of the IVM duration with rapamycin treatment, which maintains 
expression of molecular maturation factors, does not negatively affect porcine oocytes.

ROS function are crucial signaling molecules in diverse physiological processes, including 
resumption of the meiotic cell cycle, and contribute to pathological processes such as apoptosis and 
senescence [40,41]. ROS were proposed to participate in oocyte meiotic arrest [42–44]. Oxidative 
stress perturbs bovine embryonic development after fertilization [45]. Furthermore, a change in 
the redox status of human oocytes during in vitro culture is related to an increased occurrence of 
apoptosis in gametes [46]. Porcine gametes can incur DNA damage and undergo apoptosis during 
IVM [47–49]. Treatment with rapamycin effectively reduces intracellular ROS levels and improves 
mitochondrial localization [26]. Extension of the IVM duration with rapamycin treatment 
demonstrated a significant reduction of levels of ROS (Figs. 3A and 3B). This finding suggests that 
this approach improves in vitro oocyte culture and maintains oocyte health.

We investigated the influence of extension of the IVM duration with rapamycin treatment on 
porcine embryonic development. The percentage of blastocyst formation at day 6 and total cell 
number per blastocyst were increased when the IVM duration was extended with rapamycin 
treatment (Figs. 4A, 4B, and 4C). Gene expression is a major contributor to embryonic 
development, and any disruption in gene expression during culture of embryos in vitro can 
potentially hinder embryo production [50,51]. We examined mRNA levels of POU5F1, SOX2, 
NANOG, and CDX2 in the 0 R, 10 R, and control groups. Transcription factor genes such as these 
play essential roles in early development and are indispensable for proliferation of undifferentiated 
embryonic stem (ES) cells in culture. mRNA and protein expression of POU5F1 has been detected 
in various cellular components, including blastomeres of preimplantation embryos, the ICM of 
blastocysts, epiblasts, primordial germ cells, and the majority of germ cells [52-54]. SOX2 and 
NANOG form interactions with POU5F1 to regulate the transcriptional hierarchy that specifies ES 
cell identity [55-57]. The transcription factors POU5F1 and SOX2 are expressed in both the ICM 
and trophectoderm (TE) of porcine blastocysts. CDX2 expression is essential for TE formation 
[58]. POU5F1 and NANOG exhibited significant upregulated (p < 0.05) in 10 R blastocysts (Fig. 
4D). However, CDX2 expression was not significantly affected. These data show that extension of 
the IVM duration with rapamycin treatment upregulates specific transcription factors related to 
the ICM, including POU5F1 and NANOG, but does not affect expression of the TE-related factor 
CDX2 in blastocysts. Taken together, these observations demonstrate that extension of the IVM 
duration with rapamycin treatment significantly influences porcine embryonic development in 
vitro.

We explored the effect of extension of the IVM duration with rapamycin treatment on apoptotic 
cell death in porcine embryos. DNA fragmentation was significantly decreased in 10 R blastocysts 
extended duration of IVM by rapamycin treatment (Fig. 5B). We also examined the apoptosis 
expression levels of BCL2L1, FAS, and CASP3 (Fig. 5C). Although the pro-apoptotic expression 
levels of FAS and CASP3 was not different in all groups, the anti-apoptotic expression level of 
BCL2L1 in blastocysts was increased in the 10 R group. BCL2L1 encodes the protein BCL-xL, 
an anti-apoptotic protein [59]. BCL-xL prevents cell death by inhibiting cytochrome c release 
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from mitochondria, a key step in the cell death pathway [60,61]. These observations suggest that 
extension of the IVM duration with rapamycin treatment facilitates embryonic development by 
suppressing apoptosis at the molecular level during preimplantation stages.

Our results indicate that extension of the IVM duration with rapamycin treatment enhances 
molecular maturation of porcine oocytes by repressing ROS production and improves porcine 
embryonic development. This study demonstrates the combination of extension of the IVM 
duration and treatment with rapamycin enhances maturation of porcine oocytes. These results 
should be further applied to assisted reproductive technology to produce high-quality embryos. 
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