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Abstract
Subclinical ketosis (SCK) is a prevalent metabolic disorder that occurs during the transition to 
lactation period. It is defined as a high blood concentration of ketone bodies (beta-hydroxy-
butyric acid f ≥ 1.2 mmol/L) within the first few weeks of lactation, and often presents without 
clinical signs. SCK is mainly caused by negative energy balance (NEB). The objective of 
this study is to identify single nucleotide polymorphisms (SNPs) associated with SCK using 
genome-wide association studies (GWAS), and to predict the biological functions of proxi-
mal genes using gene-set enrichment analysis (GSEA). Blood samples were collected from 
112 Holstein cows between 5 and 18 days postpartum to determine the incidence of SCK. 
Genomic DNA extracted from both SCK and healthy cows was examined using the Illumi-
na Bovine SNP50K BeadChip for genotyping. GWAS revealed 194 putative SNPs and 163 
genes associated with those SNPs. Additionally, GSEA showed that the genes retrieved by 
Database for Annotation, Visualization, and Integrated Discovery (DAVID) belonged to calci-
um signaling, starch and sucrose, immune network, and metabolic pathways. Furthermore, 
the proximal genes were found to be related to germ cell and early embryo development. 
In summary, this study proposes several feasible SNPs and genes associated with SCK 
through GWAS and GSEA. These candidates can be utilized in selective breeding programs 
to reduce the genetic risk for SCK and subfertility in high-performance dairy cows.
Keywords: Subclinical ketosis, Genome-wide association studies (GWAS), Single nucleotide  
 polymorphism (SNP), Gene-set enrichment analysis, Biomarker

INTRODUCTION
Over the past three decades, intensive genetic selection for high milk yield in dairy cattle has led to 
a pronounced energy deficit postpartum and a decline in fertility [1,2]. This occurs because negative 
energy balance (NEB) takes place when nutrient requirements for maintenance and lactation exceed 
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dietary intake [3]. Cows experiencing NEB in late gestational and early lactation are particularly 
at risk of metabolic disorders due to utilization of body fat as a source of energy, leading to an 
elevation of circulating ketone bodies concentration in the bloodstream. Subclinical ketosis 
(SCK) is a prevalent metabolic disorder in high-producing dairy cows, characterized by increased 
concentrations of ketone bodies in the b1ood without clinical signs of ketosis [4]. The gold standard 
diagnostic test for SCK is the measurement of a beta-hydroxybutyric acid (BHBA) in serum/
plasma [5,6] and cows with a BHBA concentration of 1.2 to 2.9 mmol/L are considered to have 
SCK [6]. The average incidence of SCK within the first weeks of lactation ranges from 26% to 56% 
[7,8]. Additionally, Cows with higher milk production were at increased risk for hyperketonemia 
(HYK), while cows with a body condition score (BCS) of 4 or higher before calving or those 
that lost more body condition during the transition period were more likely to develop HYK, 
emphasizing the importance of avoiding over-conditioning of cows during the dry period and 
excessive BCS loss during the transition period [9].

Interestingly, SCK has a negative association on reproductive performance, including an increased 
calving to first estrus, first insemination, and pregnancy intervals [2,10]. Specifically, SCK cows are 
less likely to become pregnant after first insemination and produced less milk [11–13].

Loor and colleagues reported that 2,415 genes were altered in liver from periparturient 
dairy cows undergoing nutrition-induced ketosis, and the genes were associated with oxidative 
phosphorylation, protein ubiquitination, cytokine signaling, fatty acid uptake/transport, fatty acid 
oxidation, cholesterol metabolism, growth hormone signaling, proton transport, and fatty acid 
desaturation [14]. Additionally, the proteome analysis in feed-deprived dairy cows revealed that 
altered proteins are involved in fatty acid oxidation, glycolysis, electron transfer, protein degradation, 
antigen processing, cytoskeletal rearrangement, and cholesterol transport [15]. However, our 
understanding of polymorphisms within genes linked to SCK, which could aid in the removal of 
cows with SCK-susceptible genotypes from the breeding population, remains limited. This is due 
to the low heritability range (0.01–0.16) of the trait and the challenges associated with detecting 
the phenotypic trait. Nonetheless, it’s noteworthy that a reference population, utilizing blood beta-
hydroxybutyrate (BHB) concentration measurements, has the potential to estimate HYK breeding 
values for a genomic selection program [16,17].

In this study, we conducted a single nucleotide polymorphism (SNP)-based gene-set enrichment 
analysis (GSEA) to identify candidate genes associated with SCK. We first compared allele 
frequencies of each SNP between the SCK and non-SCK control groups using genome-wide 
association studies (GWAS). Subsequently, we used GSEA to better understand the association of 
genes with SCK susceptibility by identifying biological process or functional pathways. GSEA is a 
powerful analytical method for interpreting multiple contributing factors affecting complex traits 
and diseases that can be regulated by different combinations of mutations among different genes 
within biological groupings [18–20]. The identification of genetic markers and putative biomarker 
genes using GWAS-GSEA would contribute to successful breeding programs of dairy cattle and 
provide early and accurate diagnosis in terms of SCK susceptibility. 

MATERIALS AND METHODS
All experimental protocols were approved by the Animal Care and Use Committee of the College 
of Agriculture and Life Sciences at the University of Wisconsin-Madison (ACUC no. A005802).

Animals and phenotypic data
As previously described in other studies [9,17], Holstein cows were fed a corn silage and wheat 
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straw based total mixed ration (TMR) during the dry period, and a TMR based on corn silage 
and alfalfa silage after calving. Blood samples were collected from a total of 112 Holstein cows 
two days per week between 5 and 18 days postpartum, during the morning feeding, to determine 
the incidence of SCK. Blood BHBA concentration was measured using an electronic hand-held 
biosensor, the Precision Xtra meter (Abbott Lab, Abbott Park, IL, USA), which is a useful cow-side 
ketone test with high sensitivity (91% to 94%) for detecting SCK in postpartum dairy cow blood 
samples, compared with laboratory assays [21]. Cows were diagnosed with SCK (hyperketonaemia) 
if blood BHBA concentration was ≥ 1.2 mmol/L. A binary SCK phenotype was assigned each cow. 
Of the 112 cows, 30 (26.7%) were diagnosed with SCK, and 82 (71.4%) were healthy.

DNA extraction and genotypic data
Genomic DNA was extracted from hair follicles of cows and genotyped using the Illumina 
BovineSNP50K BeadChip according to the manufacturer’s instructions (Illumina, San Diego, CA, 
USA), which includes 54,609 Bos Taurus autosome SNPs. The Genome Studio Data Analysis 
software (Illumina) was used for visualizing SNP data and conducting preliminary analysis. Initially, 
we compared individual SNPs from SCK cows and healthy cows, and examined alternative alleles 
or variants at a given SNPs. SNP filtering was performed using PLINK 1.9 software with the 
following exclusion criteria: minor allele frequency (MAF) < 0.01; call rate < 0.10; and Hardy–
Weinberg equilibrium (HWE) < 0.0001. After a quality control process, 43,552 SNPs were 
retained for further analyses. To identify genomic regions linked with SCK, we utilized a binary 
trait, assigning ‘1’ when blood BHBA concentration ≥ 1.2, and ‘0’ otherwise. The genetic relationship 
matrix (GRM) that we constructed was then employed in a GWAS using a following mixed linear 
model (MLM): 

yij = μ + βSNPi + aj +eij

where yij is the binary SCK phenotype for a given cow with overall mean µ; β is the marker 
genotype effect, SNPi is the additive SNP substitution effect, aj is a random polygenic effect, and eij 
is a vector of random residual effects. Genome-wide p-values threshold of 10−5 was used for analyses 
of variants.

Gene-set enrichment analysis and visualization of gene network
To assign SNPs to genes, we searched for SNPs that were detected within the genomic sequences of 
annotated genes (using dbSNP; https://www.ncbi.nlm.nih.gov/SNP/) or within 20 kb of the 5’ or 
3’ ends of the first or last untranslated region (UTR), respectively. To explore functional enrichment 
in the gene sets and generate Kyoto Encyclopedia of Genes and Genomes (KEGG) biological 
pathways, we used Database for Annotation, Visualization, and Integrated Discovery (DAVID) 
Bioinformatics Resources 6.8 (http://david.abcc.ncifcrf.gov/). To confirm the predicted gene set 
function and interaction, we analyzed the listed genes in the KEGG pathways using the web-
based tool Gene Multiple Association Network Integration Algorithm (GeneMANIA; https://
genemania.org/). We targeted SNPs with a call rate of ≥ 95% and a MAF of ≥ 5% for prediction of 
gene sets in this study.

Statistical analysis
MAF was determined using the FREQ procedure of SAS version 9.2 (SAS Institute, Cary, NC, 
USA). The Benjamini-Hochberg (BH) false discovery rate (FDR) correction was applied to raw 
p-values (< 0.05). The distribution of genotypes was tested for deviation from HWE using a chi-
square test. A p-value less than 0.05 was considered statistically significant.
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RESULTS AND DISCUSSION
We conducted GWAS by analysing 54,609 SNPs and identified 8,360 loci that showed differences 
when comparing SNPs between the SCK and healthy control groups. We then eliminated SNPs 
with lower MAF frequencies, which were not considered to be genome-wide significant due to the 
sample size, and identified 194 SNPs associated with SCK in 163 functional candidate genes. This 
was achieved by evaluating all SNPs within each gene and the surrounding 1 Mb on each side of the 
gene for their suitability to serve as the gene’s proxy (Table 1 and Supplementary Table S1) [22]. 

To identify key genes and pathways associated with SCK, we performed KEGG pathway 
enrichment analysis using DAVID (https://david.ncifcrf.gov/). We found several pathways that may 
be involved in the incidence of SCK, including calcium signaling, starch and sucrose metabolism, 
cyclic adenosine monophosphate (cAMP) signaling, intestinal immune network for IgA 
production, and metabolic pathways (Table 2), although none of the evaluated KEGG pathways 
or Gene Ontology (GO) gene sets were significantly enriched for genes associated with diseases 
such as ketosis. Among these pathways, calcium signaling, starch and sucrose metabolism, and 
cAMP signaling pathways were statistically significant (p < 0.05). In the calcium signaling pathway, 
we identified several candidate genes including ATPase plasma membrane Ca2+ transporting 
1 (ATP2B1), stromal interaction molecule 2 (STIM2), phospholipase C delta 3 (PLCD3), 
Ryanodine receptor 2 (RYR2), and prostaglandin F receptor (PTGFR). In the starch and sucrose 
metabolism pathway, three candidate genes were detected: UDP glucuronosyltransferase family 1 
member A6 (UGT1A6), UGT2A1, and probable maltase-glucoamylase 2 (LOC1002966901). 
The cAMP signaling pathway included ATP2B1, T-cell lymphoma invasion and metastasis 

Table 1. Top 20 ranked SNPs and functional candidate genes associated with SCK using GWAS
rs_number Gene Chromosome Position_SNP p-value

rs41668260 LRRTM4 11 59319163 0.0003

rs43681489 RCAN1 11 59351201 0.0005

rs42034762 HSBP1L1 24 785766 0.0009

rs109448272 ST8SIA1 5 88334676 0.0024

rs41582549 LSAMP 1 61069157 0.0027

rs41603224 TMEM9B 15 44224325 0.0045

rs29027118 AAK1 11 67944693 0.0047

rs109902840 LOC104975886 25 29977087 0.006

rs110679980 EDARADD 28 9131855 0.0062

rs42653943 LINGO2 8 15734273 0.0068

rs42404957 TOX 14 26926569 0.0101

rs109853479 SMG6 19 23798617 0.011

rs109530663 LOC104972363 5 21947260 0.0114

rs42329164 CNTN5 15 9792729 0.0142

rs109007144 ATP2B1 5 19594448 0.0146

rs110298601 SPECC1L 17 73627135 0.0146

rs29022825 GABPA 1 10056851 0.0167

rs110686608 SMG6 19 23761130 0.0172

rs110957256 SPIDR 14 20759946 0.0183

rs42328461 CNTN5 15 9814478 0.0218

rs41656716 MUC19 5 40580237 0.0223
SNP, single nucleotide polymorphism; SCK, subclinical ketosis; GWAS, genome-wide association studies
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1 (TIAM1), RYR2, phosphodiesterase 3A (PDE3A), and mitogen-activated protein kinase 
10 (MAPK10). We then analyzed the genes listed in the KEGG pathways (Table 2) using 
GeneMANIA, which can extend the listed genes with functionally similar genes and predict their 
biological function/network. This approach showed that the listed genes are co-expressed (78.47%) 
and co-localized (13.73%). Interestingly, UGT1A6 and UGT2A1 may affect metabolism, such as 
glucuronidation.

Identification of genes affecting susceptibility to common disease is very difficult because each 
causal gene only makes a limited contribution to the diseases. Although ketosis is an important 
metabolic disease of dairy cows, and SCK occurs more often than clinical ketosis, little is known 
about the genes and signal pathways affecting SCK in the cattle. It has been reported that 
polymorphisms within the APOBR gene, which codes for the apoliporportein receptor, are 
associated with the milk level of a prognostic ketosis biomarker in dairy cows [23]. Another study 
has reported that a SNP in the 3́- UTR of protein kinase AMP-activated non-catalytic subunit 
gamma 1 (PRKAG1), a regulatory subunit of the AMP-activated protein kinase (AMPK) that 
plays a critical role in regulating cellular energy metabolism, can influence BHBA levels and milk 
production. This effects is due to the distortion of the target site of the highly expressed microRNA 
mir-423-5p in the bovine mammary gland, liver, and kidney [24]. These findings suggest that allele 
mutation in specific genomic regions may be related to the susceptibility of SCK. However, most 
studies have focused on evaluating the value of phenotypic traits such as the levels of BHBA and 
nonesterified fatty acids (NEFA) for predicting ketosis [16] rather than identifying specific variants 
associated with functional candidate genes that influence disease susceptibility. 

A recent study has reported that a combined approach using GWAS, genome-wide interaction 
studies (GWIS), and metabolic pathway enrichment analyses identified SNPs and proximal 
candidate genes associated with susceptibility to HYK. This suggest that the combined analysis is 
an effective way to detect genetic factors contributing to HYK, and that the proposed genes are 
related to energy and lipoprotein metabolism, particularly insulin secretion or resistance [25].

In this study, we identified SNPs associated with SCK using GWAS and a pathway-based 
approach, leading to the discovery of functionally important genes. For example, SNPs closely 
located to ANAPC4 and SEC 23A are identified by using the combined analysis (GWAS-
GSEA). This result is consistent with previous literatures which states that both genes are associated 
with nutrition-induced ketosis [14] and that expression level of these genes is altered in ketogenic 
diet rats, suggesting their involvement in mitochondrial biogenesis [26]. 

In addition, several genes listed in Table 1 are involved in metabolic dysfunction such as diabetes; 
regulator of calcineurin 1 (RCAN1) is highly expressed in type 2 diabetes in human and mice, 
and elevation of RCAN1 reduces β-cell mitochondrial function and ATP availability, resulting in 
a reduction of glucose-stimulated insulin secretion [27], ST8 alpha-N-acetyl-neuraminide alpha-

Table 2. List of KEGG Pathways using GESA-SNP analysis
Category Term p-value Genes

KEGG_PATHWAY bta04020: Calcium signaling pathway 0.038 ATP2B1, STIM2, PLCD3, RYR2, PTGFR

KEGG_PATHWAY bta00500: Starch and sucrose metabolism 0.040 UGT1A6, UGT2A1, LOC100296901

KEGG_PATHWAY bta04024: cAMP signaling pathway 0.046 ATP2B1, TIAM1, RYR2, PDE3A, MAPK10

KEGG_PATHWAY bta04672: Intestinal immune network for IgA production 0.055 TNFRSF13B, MAP3K14, CXCL1

KEGG_PATHWAY bta01100: Metabolic pathways 0.071 UGT1A6, GLUL, SEPHS1, FUT8, CYP27A1, COX7B2, 
GADL1, ST8SIA1, PLCD3, UGT2A1, AMPD3, EXT2, 
SARDH, LOC100296901

KEGG, Kyoto Encyclopedia of Genes and Genomes; GSA-SNP, gene set analysis - single nucleotide polymorphism.
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2,8-sialyltransferase 1 (ST8SIA1), a membrane-bound glycosphingolipid, is reported to affect 
impaired glucose-stimulated insulin secretion [28], and an intronic SNP within leucine rich repeat 
and Ig domain containing 2 (LINGO2) genes is associated with body mass and adiposity in elder 
humans [29]. Moreover, analysis of integrated function/interaction using GeneMANIA supports 
our bioinformatics approach. For example, UGT1A6 and UGT2A1 are highly associated with 
metabolic dysfunction observed in the ketogenic diet in humans and high-fat diet-induced fatty 
liver in rat [30,31]. 

In this study, our analysis based on GWAS-GSEA suggested the involvement of calcium 
signaling, starch and sucrose metabolism, cAMP signaling, intestinal immune network for IgA 
production, and metabolic pathways in SCK. Currently, understanding of the interplay between the 
metabolic and immune systems is crucial to decipher the integration of metabolism and immunity 
in periparturient dairy cows. As previously mentioned, the periparturient dairy cow experiences a 
significant increase in nutrient requirements for lactation; roughly a threefold increase in glucose 
demand, a twofold increase in amino acids demand, and approximately a fivefold increase in fatty 
acids [32]. Furthermore, cows require a fourfold increase in calcium on the day of parturition, and 
early lactating cows experience negative calcium balance [33,34]. Intracellular calcium, in particular, 
must be maintained to avoid nerve and muscle dysfunction, as it is involved in many signaling 
pathways [35]. 

Additionally, NEB during early lactation may worsen periparturient immunosuppression, making 
dairy cows more vulnerable to infectious diseases [36]. HYK, in particular, appears to negatively 
affect immune function, impairing udder defense mechanisms related to leukocyte function in 
NEB cows [37]. Although the mechanisms of impairment have not been fully elucidated, the 
high concentration of ketone bodies has been associated with suppressed bovine lymphocyte 
blastogenesis, lowered chemotactic capacity of leukocytes, and decreased production of interferon 
(IFN)-gamma and tumor necrosis factor (TNF) alpha [38–40]. 

Moreover, we identified several candidate genes that are related to reproductive performance, 
including early embryo development, implantation, and germ cell development. For instance, 
expression of Ectodysplasin-A receptor-associated adapter protein (EDARADD) and LINGO2 
affect early cleaving embryos development and oocyte maturation, respectively [41–43]. 
SMG6 Nonsense Mediated mRNA Decay Factor (SMG6) depleted blastocyst embryos did not 
form the ICM, leading to early embryonic lethality in mice [44]. Additionally, ATP2B1 and GA 
Binding Protein Transcription Factor Subunit Alpha (GABPA) may affect spermatogenesis via 
sperm calcium channel and folliculogenesis via granulosa cell interactions, respectively [45,46]. 
Importantly, a SNP located within an intron of Mucin glycoprotein 19 (MUC19) has been 
reported to be involved in early embryonic loss during the implantation window of heifer Holstein 
cows [42]. 

In summary, our study identified chromosomal regions associated with the incidence of SCK 
and their corresponding genes, highlighting the relationship between nutritional metabolism and 
immunity in periparturient dairy cows through GSEA. Our approach using SNP and GSEA 
provided integrated information for the identification of genes associated with SCK. Notably, we 
also found that the proximal genes of SNPs are related to gametogenesis, early preimplantation 
development, and the implantation window, suggesting potential links between SCK and 
reproductive performance. This genetic information can be utilized for optimizing breeding 
programs and managing high-performance cows with infertility, thus minimizing economic losses 
caused by SCK.
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