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 9 

Abstract 10 

This review examines the application of video processing and convolutional neural 11 

network (CNN)-based deep learning for animal face recognition, identification, and re-12 

identification. These technologies are essential for precision livestock farming, addressing 13 

challenges in production efficiency, animal welfare, and environmental impact. With 14 

advancements in computer technology, livestock monitoring systems have evolved into 15 

sensor-based contact methods and video-based non-contact methods. Recent developments in 16 

deep learning enable the continuous analysis of accumulated data, automating the monitoring 17 

of animal conditions. By integrating video processing with CNN-based deep learning, it is 18 

possible to estimate growth, identify individuals, and monitor behavior more effectively. 19 

These advancements enhance livestock management systems, leading to improved animal 20 

welfare, production outcomes, and sustainability in farming practices. 21 

 22 

Keywords: livestock, recognition, identification, re-identification, convolutional neural 23 

network, deep learning 24 
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Introduction 27 

Improving production efficiency, ensuring animal welfare, and reducing environmental 28 

impact require technologies for growth estimation, individual identification, and behavior 29 

monitoring [1-3]. As computer technology advances, livestock monitoring systems have also 30 

evolved. These systems are broadly categorized into sensor-based contact methods and video-31 

based non-contact methods [4-7]. Sensor-based contact methods involve collecting 32 

behavioral data using a sensor attached to the ear or gathering real-time information from a 33 

microchip implanted in the neck of an animal. However, these methods are prone to sensor 34 

failures, difficult to scale for large populations, and can be stressful for the animals [8]. 35 

Particularly, RFID tags, which are widely used due to their low cost, are limited by their 36 

restricted range, inability to read multiple tags simultaneously, and time consumption, and the 37 

attachment process itself can be stressful for animals [9-12]. On the other hand, video-based 38 

non-contact monitoring technologies do not require physical contact. As a result, they 39 

eliminate stress for the animals, allow for remote monitoring of their condition, and enable 40 

monitoring even at night.  41 

Recently, the rapid advancement of computer technologies, including deep learning 42 

algorithms, has enabled the analysis of accumulated data to continuously monitor and analyze 43 

animal conditions without human intervention, resulting in efficient and automated 44 

monitoring systems. This review examines and summarizes research related to video 45 

processing and CNN-based deep learning for animal face recognition [21-44], identification 46 

[36, 45-54] and re-identification [55], and assesses its applicability to precision livestock 47 

farming for improving animal welfare and production efficiency. 48 

 49 

1. Precision Livestock Farming and Monitoring Systems 50 
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Precision livestock farming (PLF) has grown alongside advancements in sensing 51 

technology, big data, and deep learning. PLF applies these technologies to individual 52 

recognition and behavior monitoring, feed intake and weight measurement, barn temperature 53 

control, body temperature and estrus detection, activity levels, gait, body condition, and 54 

carcass traits [1-3]. The goal of PLF is to enhance farm management efficiency, conserve 55 

resources, improve animal welfare, and maximize productivity by implementing real-time 56 

data monitoring and automated management systems. 57 

The monitoring methods used in PLF are categorized into sensor-based contact methods 58 

and video-based non-contact methods. Contact methods involve attaching devices like collars, 59 

bands, ear tags, and RFID tags to animals to collect data. While these methods can gather 60 

accurate physiological data, they may also cause stress to the animals and are challenging to 61 

manage and maintain on a large scale [8-12]. Non-contact methods collect data remotely 62 

without direct contact with the animals by using tools like CCTV, special cameras, drone 63 

cameras, and sound detection systems, and rely primarily on analyzing video and image data 64 

[4-7]. Although this method may be less accurate compared to contact-based methods, it is 65 

advantageous for animal welfare as it does not cause stress to the animals. It also allows for 66 

monitoring over a relatively wide area and is more economical in terms of equipment 67 

management and maintenance. 68 

 69 

2. Animal Object Detection 70 

Non-contact based monitoring is primarily performed through object detection [14-17], 71 

which is a technology that detects objects in images or videos and indicates the location of 72 

each object [18-20]. Even more detailed analysis is possible when object detection is 73 

combined with a CNN [21-29] because CNN enables powerful feature extraction while 74 

maintaining spatial structure in large volumes of images. Furthermore, various architectures 75 
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and high-performance algorithms have been developed. Recently, research has been 76 

conducted not only on object recognition [30-44], but also on object identification [36, 55].  77 

Object recognition involves distinguishing a specific object from other objects by 78 

classifying and recognizing the type of object detected in an image or video. Object 79 

identification includes matching the recognized object in a database to identify the specific 80 

object. As a real-world application of object recognition, inter-species recognition research is 81 

being conducted to effectively recognize faces among different animal species so that this 82 

technology can recognize various animal species in one system [42].  83 

The field of human face recognition is already widely used in biometric authentication. 84 

The deep learning-based algorithm ArcFace, which converts the features of each face into 85 

embedding vectors, shows an accuracy of 99.78% [32]. On the other hand, the field of animal 86 

recognition or identification has seen significant research in recent years, but has fewer 87 

results. Animal identification involves distinguishing and recognizing specific animals and 88 

can be applied to research that monitors individual animals' health, behavior, and 89 

reproductive status, and can be used for the protection of endangered species [35]. 90 

Technologies for animal face identification, recognition, re-identification, and inter-species 91 

recognition can be utilized to monitor the health status, growth patterns, and behavior 92 

patterns of individual animals. In the case of wild animals, these technologies play a crucial 93 

role in biological conservation and research by helping to determine an animal’s population 94 

or monitor their migration paths [50]. 95 

Understanding the health and behavior patterns of animals in the livestock sector is crucial 96 

for early disease detection, diagnosis, and animal welfare. As a result, animal recognition 97 

technologies are essential in PLF [30]. Furthermore, research on animal re-identification is 98 

also being conducted. This research aims to recognize previously identified animals for long-99 

term monitoring of behavior patterns, survival rates, and migration paths [50-57]. To 100 
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accurately identify individual animals, it is necessary to precisely detect their location within 101 

an image through object detection and accurately classify them. The more accurate the 102 

detection results are, the more accurate the recognition results will be.  103 

Traditional object detection algorithms use manual methods that involve feature extraction 104 

considering color, gradient, texture, and shape, and use KNN, SVM, and Bayesian classifiers. 105 

These methods are suitable for detecting small, distinct objects, but they are less accurate and 106 

inefficient for detecting objects in real-world images that include noise such as backgrounds. 107 

Object detection has significantly improved in accuracy due to machine and deep learning 108 

algorithm improvements, and it is being utilized in various fields, including PLF for non-109 

invasive identification [14, 15].  110 

Generally, deep learning-based object detection algorithms can be divided into one- and 111 

two-stage methods. One-stage algorithms process the image only once within the network to 112 

directly extract features, classify them, and determine their location. Examples include You 113 

Only Look Once (YOLO) and Single Shot MultiBox Detector (SSD). On the other hand, two-114 

stage algorithms, such as R-CNN, Fast R-CNN, and Faster R-CNN, first select region 115 

proposals within the image, and then classify and refine the boundaries of the objects in each 116 

region. These algorithms require large training and validation datasets to show accurate 117 

learning results. 118 

 119 

3. Dataset 120 

Recording and observing animal behavior through videos is common, but manually 121 

processing large amounts of data requires significant time and labor. Particularly for animals, 122 

the individual characteristics of various species differ and their living environments are 123 

diverse. Additionally, they do not cooperate in acquiring images so the data is insufficient for 124 

adequate training. In fields such as image recognition, video processing, and speech 125 
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recognition, CNNs require a substantial amount of training data to train an effective 126 

recognition system [21-29]. 127 

Animal recognition and identification datasets are designed to distinguish and identify 128 

animals at the species or individual level. These datasets include images or videos of animals, 129 

as well as metadata describing the characteristics of each animal. Recently, there has been 130 

increasing interest in long-term tracking to observe how individual animals change and 131 

behave over time and in different environments. This has led to the use of animal re-132 

identification datasets. These datasets are used to re-identify specific animals across various 133 

times, locations, or other conditions [50]. However, animal re-identification datasets are not 134 

widely available, and the few well-summarized datasets often have small data sizes, limited 135 

annotations, and images captured in non-wild settings. 136 

Fortunately, with the advancement of facial recognition technology, more and more open-137 

source datasets are being made available for research, and animal datasets are becoming 138 

increasingly diverse. Labeled Faces in the Wild (LFW) provides a total of 13,233 annotated 139 

face images from 5,749 people in natural and complex environments [58]. ImageNet offers 140 

over 14 million images, including animal images with backgrounds, categorized into 27 141 

major categories and over 20,000 subcategories [59]. PASCAL VOC includes approximately 142 

11,530 images containing 27,450 objects, with bounding boxes and pixel-level masks 143 

encoded by class [60]. Datasets that include various animals are Animal Web [61], which 144 

contains over 21,000 species-specific face images, Animals with Attributes [62], which 145 

includes 37,322 images from 50 species in versions 1 and 2, Animal Faces-HQ [63], which 146 

contains a total of 15,000 high-resolution animal face images from three categories (dogs, 147 

cats, and wild animals), and ZooAnimal Faces 148 

(https://www.kaggle.com/datasets/jirkadaberger/zoo-animals), which includes face images of 149 

zoo animals.  150 
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Wild animal image datasets captured in various environments are mainly collected through 151 

automatic camera traps and include metadata such as species, location, date, and time. 152 

Notable datasets include Smithsonian Wild provided by the Smithsonian Conservation 153 

Biology Institute, AfriCam (https://emammal.si.edu/), Caltech Camera Traps 154 

(https://beerys.github.io/CaltechCameraTraps/) provided by the California Institute of 155 

Technology, and Wild Animal Face, which is extensively used in computer vision and 156 

machine learning research for training and evaluating animal face recognition models. 157 

Datasets collected for specific wild animal research include Amur Tiger Re-identification in 158 

the Wild, which contains images of wild Amur tigers [55], the Grévy's zebra dataset 159 

(https://datasets.wri.org/dataset/grevy-s-zebra-population-in-kenya-1977-78) containing 160 

images of Grevy's zebras in Kenya, Chimpanzee Faces in the Wild (ChimpFace), which 161 

stores images of wild chimpanzee faces, and the African Elephant dataset, which includes 162 

images of various ear shapes and facial features of African elephants. The Animal Movement 163 

and Location dataset collects movement patterns and location information of wild animals 164 

and is used in re-identification research.  165 

With the increasing importance of PLF, the collection of livestock image datasets is also 166 

actively being conducted. Notable datasets include CattleCV 167 

(https://www.kaggle.com/datasets/trainingdatapro/cows-detection-dataset), which contains 168 

thousands of cattle images and health data, Afimilk Cow, and Dairy Cattle Behavior. Pig 169 

image datasets include PigPeNet, which contains over 10,000 pig face images, and RiseNet, 170 

which includes 7,647 pig face images collected from 57 videos [42]. Other livestock image 171 

datasets include ThoDTEL; 2015, which contains 1,410 images from 50 horses, Sheep Face, 172 

which contains hundreds of sheep face images, Goat-21, which contains approximately 2,100 173 

goat face images, and Poultry-10K, which contains about 10,000 chicken images 174 

(https://livestockdata.org/datasets). 175 
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 176 

4. Performance Enhancement: Data Pre-processing and Augmentation 177 

There are various ways to improve the performance of machine or deep learning models. 178 

Images collected from different environments often contain noise from being obscured by 179 

obstacles or being darkened or blurred due to light. Data pre-processing is necessary to 180 

improve the quality of the data before deep learning model training and analyzing in order to 181 

enhance the model’s efficiency and accuracy. Image pre-processing includes resizing images 182 

for consistent input, improving image quality, or restoring images to make analysis easier. 183 

This involves techniques such as histogram equalization, grayscale conversion, image 184 

smoothing, noise removal, and image restoration. Additionally, to increase the generalization 185 

performance of the model or to prevent overfitting to the same data, data augmentation is 186 

performed to artificially increase the diversity of the dataset and extend or augment the 187 

limited data. Image augmentation techniques include mirror imaging, rotation, scale 188 

transformation, translation, left-right flipping, zooming in/out, color dithering, noise addition, 189 

distortion, and other pre-processing methods [64-66]. 190 

 191 

5. Performance Enhancement: Pre-training and Transfer Learning 192 

Training recognition models using deep learning requires a vast amount of training data. 193 

Even when utilizing open datasets or performing image augmentation, it is often challenging 194 

to secure a sufficient amount of labeled image data for specific animals. In such situations, 195 

pre-training and transfer learning are used to improve model performance and enable efficient 196 

training [11, 67, 68]. Pre-training involves using large-scale datasets like ImageNet to pre-197 

train the model to learn general features and set stable initial weights. This accelerates 198 

training and enhances model performance. The process of adjusting the weights of a pre-199 
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trained model to fit a new task is called fine-tuning [21, 42], and it is used to achieve optimal 200 

performance. Recent studies actively explore enhancing network performance through both 201 

pre-training and fine-tuning.  202 

Transfer learning is a technique that utilizes a pre-trained model for a new task by using 203 

the lower layers of the pre-trained model as feature extractors. By retraining a model learned 204 

from a previous task, transfer learning allows rapid learning on new datasets and improves 205 

model performance even in data-scarce situations. Even when data is sufficient, using the 206 

weights of an existing model as initial values through transfer learning can reduce the training 207 

time and allow training to proceed efficiently, thereby improving performance. 208 

 209 

6. Animal Face Recognition/Identification/Re-identification 210 

To recognize animal faces and identify the species or individuals from given images or 211 

video frames, it is necessary to extract animal face features using deep learning models like 212 

CNNs and train classifiers based on these features. CNNs introduce convolutional layers 213 

within the network to learn feature maps that represent the spatial similarities of patterns 214 

found in images. This makes them effective deep learning models for processing and 215 

analyzing visual data like images or videos [24, 25].  216 

CNNs consist of convolutional layers, which extract local features from the input image, 217 

pooling layers, which reduce the spatial size to decrease computation and emphasize 218 

important features, and fully connected layers, which perform classification tasks at the end 219 

of the network. The training process uses a backpropagation algorithm to calculate the 220 

gradient of the loss function and to update the network weights, and employs optimization 221 

techniques such as gradient descent to minimize errors.  222 
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Standard CNN frameworks include AlexNet, VGG16, GoogLeNet/InceptionNet, ResNet, 223 

and CapsNet [27]. With the advancement of deep learning technologies such as CNNs, 224 

research on recognizing, identifying, or re-identifying animal faces using these technologies 225 

has been actively progressing. Animal face recognition is the process of determining whether 226 

a detected animal face belongs to a specific animal or species. Distinct from this, animal face 227 

detection involves locating the face of an animal in an image or video, identifying the 228 

position of the face, and marking the area with a box.  229 

Animal face identification is the process of confirming whether a recognized animal face 230 

belongs to a specific individual within the same species. Re-identification refers to repeatedly 231 

identifying the same animal over time and across different locations. Re-identification 232 

techniques involve complex algorithms that compare existing databases to determine if it is 233 

the same individual, and measure the similarity between feature vectors. These techniques are 234 

necessary for tracking individuals and analyzing behaviors. 235 

 236 

7. Wildlife Recognition 237 

Experiments in 2018 were conducted to classify animal and non-animal images using the 238 

Wildlife Spotter dataset, and to recognize and identify birds, rats, bandicoots, rabbits, 239 

wallabies, and other mammals using three CNN architectures: Lite AlexNet, VGG-16, and 240 

ResNet50 [36]. The results showed that ResNet50 achieved the highest accuracy and 241 

performance. However, while fine-tuning slightly improved the performance of VGG-16, it 242 

decreased the performance of ResNet50 due to overfitting. 243 

In a study published in 2024 [37], a proposed lightweight WildARe-YOLO technique for 244 

wildlife recognition was tested using the Wild Animal Facing Extinction, Fishmarket, and 245 

MS COCO 2017 datasets. Compared to the latest deep learning models, the proposed 246 

technique increased the frames per second (FPS) by 17.65%, reduced the model parameters 247 
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by 28.55%, and decreased the floating point operations per second (FLOPs) by 50.92%. In a 248 

paper published in 2019, a deep learning-based automated pipeline was developed to 249 

efficiently annotate datasets by providing a toolset and an automated framework. This 250 

pipeline identifies and tracks individuals, and provides gender and identity recognition from a 251 

video archive collected over 14 years from 23 chimpanzees [39]. 252 

Annotation was performed using a web-based VIA annotation interface by drawing tight 253 

bounding boxes around each chimpanzee's head. The proposed model achieved 84% 254 

accuracy in 60ms using a Titan X GPU and in 30 seconds using a standard CPU, surpassing 255 

expert annotators in both speed and accuracy. Using 50 hours of frontal, side, and extreme 256 

side videos, the SSD model was employed to detect faces, and a deep CNN model was 257 

trained to implement face recognition and gender recognition. The recognition model trained 258 

with the generated annotations achieved 92.47% identity recognition accuracy and 96.16% 259 

gender recognition accuracy. Using only frontal faces, it achieved 95.07% identity 260 

recognition accuracy and 97.36% gender recognition accuracy. 261 

Matkowski et al. in 2019 [35] obtained 163 images from 28 Chengdu giant pandas, and 262 

manually extracted images of their frontal faces. Then, a two-stage algorithm was proposed 263 

to recognize panda faces using a classifier based on the NIPALS algorithm. This classifier 264 

was also used to calculate comparison scores between the panda images. Compared to 265 

networks pre-trained on the ImageNet dataset, such as AlexNet, GoogLeNet, ResNet-50, and 266 

VGG-16, the proposed method achieved a 6.43% and 8.59% higher accuracy than the 267 

second-best ResNet-50. 268 

There was also a study that built a dataset containing 6,441 images from 218 pandas, with 269 

manual annotations inserted for panda faces, ears, eyes, noses, and mouths [31]. A Faster R-270 

CNN detection network pre-trained on the COCO dataset was applied for face detection, and 271 

normalized face images were input into a deep neural network (DNN) to propose a fully 272 
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automated deep learning algorithm for panda face recognition. Then, a fine-tuned ResNet-50 273 

was used to verify panda IDs, achieving 96.27% accuracy in panda recognition and 100% 274 

accuracy in detection. 275 

In 2020, a deep network model called Tri-AI was developed. It was reported that the model 276 

could quickly detect, identify, and track individuals using Faster R-CNN from videos or still 277 

images in a dataset containing 102,399 images of 1,040 known individuals [49]. This model 278 

demonstrated a face detection accuracy of 98.70%, an individual identification accuracy of 279 

92.01%, and a new individuals identification accuracy of 87.03% in frame-by-frame 280 

detection and identification of 22 individuals using a test dataset of 10 videos of golden snub-281 

nosed monkeys. 282 

Wildlife recognition technologies play a crucial role in achieving various ecological and 283 

conservation goals, such as protecting endangered species, tracking population numbers, and 284 

monitoring behavior. Deep learning models like ResNet, Faster R-CNN, and YOLO are 285 

widely utilized for wildlife detection and identification, with their performance heavily 286 

influenced by the quality and quantity of datasets. Additionally, significant efforts are being 287 

made to develop lightweight models and high-performance algorithms that reduce 288 

computational costs while maintaining high accuracy. 289 

 290 

8. Livestock Face Recognition 291 

For pig face recognition, an adaptive approach was proposed to automatically select high-292 

quality training and test data before applying a deep CNN, and an augmentation approach 293 

was proposed to improve the accuracy [34]. This approach measures the structural similarity 294 

index (SSIM) of pig face images to remove identical frames and uses a Haar cascade 295 

classifier in two stages to automatically detect pig faces and eyes. By selecting high-quality 296 

training and test images, it recognizes pig faces after applying the deep CNN technique. 297 
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Meanwhile, a technique was also proposed to improve the accuracy and robustness of the 298 

recognition model. This technique involves cutting out faces detected from images taken at 299 

various distances and angles by YOLOv5’s object detection algorithm, extracting important 300 

features with the Shuffle Attention (SA) [68] spatial channel attention mechanism and the 301 

Reparameterizable VGG (RepVGG) algorithm, and fusing features of the same scale [40]. 302 

The SA block enhances the network's feature extraction ability, while the RepVGG block 303 

improves the recognition efficiency through lossless compression. The proposed model 304 

achieved 95.95% accuracy on a side-face dataset, 97.64% on a frontal face dataset, and 305 

99.43% on a full-face dataset. A study was reported for cow face recognition using transfer 306 

learning and additional data augmentation and fine-tuning on an RGB dataset containing 315 307 

face images of 91 Aberdeen-Angus cows. Pre-trained neural networks VGGFACE and 308 

VGGFACE2 were used, with VGGFACE2 achieving better accuracy at 97.1% [38]. 309 

In a 2022 study, Li [43] constructed a dataset of 10,239 cow face images collected under 310 

various angles and lighting conditions from 103 cows on a farm. The study proposed a 311 

lightweight neural network consisting of six convolutional layers for cow face recognition. 312 

The proposed network used global average pooling instead of fully connected layers on top of 313 

the convolutional layers, reducing the number of parameters to 0.17M, the model size to 314 

2.01MB, and the computation to 9.17 MFLOPs. The model achieved a recognition accuracy 315 

of 98.7%, and Grad-CAM (Gradient-weighted Class Activation Mapping) was used to 316 

visualize and confirm which valid features were extracted. Additionally, the small size of the 317 

model allows it to be implemented on embedded systems or portable devices, enabling real-318 

time cow identification [43]. 319 

In a 2024 study, Weng [Wen24] proposed a method for automatically detecting cow faces 320 

using a YOLOv5 network-based approach. The dataset consisted of images taken at various 321 
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angles of 80 cows (Simmental beef cattle and Holstein dairy cows) at a farm in Hohhot, Inner 322 

Mongolia, using five smartphones. The study applied channel pruning and model 323 

quantization to reduce the model size, the number of parameters, and FLOPs by 86.10%, 324 

88.19%, and 63.25%, respectively, compared to the original YOLOv5 model. This enabled 325 

real-time cow face detection on mobile devices [44]. 326 

 327 

9. Livestock Face Identification and Re-identification 328 

An identification method was proposed using the Inception-V3 CNN network to extract 329 

image features from each frame, and train a long short-term memory (LSTM) network to 330 

capture temporal information and identify individual animals [47]. Combining the strengths 331 

of the Inception V3 and LSTM networks, the cattle recognition method achieved 88% 332 

accuracy on 15-frame video lengths and 91% on 20-frame video lengths. These results were 333 

superior to frameworks using only CNNs, and demonstrated the ability of the method to 334 

extract and learn additional information related to individual identification from video data. 335 

Shuyuan et al. in 2020 [50] conducted a re-identification study on the Amur Tiger Re-336 

identification in the Wild (ATRW) dataset. This dataset was built from 92 Amur tigers, a 337 

critically endangered species with fewer than 600 individuals remaining. It includes 8,076 338 

high-resolution video clips capturing tigers in various poses and lighting conditions, 339 

annotated with bounding boxes, pose keypoints, and tiger identities. The study used deep 340 

models to perform re-identification of Amur tigers. Additionally, by using the ImageNet pre-341 

trained backbone to benchmark the performance of the SSD-MobileNet-v1 [20] and SSD-342 

MobileNet-v2 [34] models, and by benchmarking object detectors using TinyDSOD [25], 343 

which was trained from scratch on the training set, and YOLOv3[32], which used the pre-344 

trained backbone DarkNet from ImageNet, it was demonstrated that these models can be 345 
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utilized for the protection and management of individual animals. 346 

Dac et al. in 2022 [50] proposed a face recognition pipeline for Holstein-Friesian dairy 347 

cows, recorded in RGB videos within a fixed frame at a robotic dairy farm located at Dookie 348 

College, University of Melbourne, Victoria, Australia. The pipeline uses images trained and 349 

fine-tuned on widely known public datasets such as ImageNet and COCO with the 350 

MobileNetV2 model, which are then registered in a database. For input cow images, the 351 

YOLOv5 model detects the face and extracts the facial region. Landmark features such as 352 

eyes and nose are extracted using a ResNet18-based landmark prediction model. Finally, face 353 

encoding is performed using embedding features from a ResNet101-based model, and face 354 

matching is conducted by comparing the similarity scores between the encoded results and 355 

the embedding features of other cow faces in the database. This study tested the method on 356 

the NVIDIA Jetson Nano device for real-time operation, achieving 84% accuracy for 89 cows 357 

captured more than twice [52]. 358 

Qiao et al. in 2022 [53] proposed a deep learning framework for cow identification by 359 

collecting 363 video datasets from 50 cows. Spatial features were extracted using CNNs, 360 

while spatiotemporal information across sequential frames was learned using BiLSTM 361 

(Bidirectional Long Short-Term Memory). The proposed model achieved 93.3% accuracy 362 

and 91.0% recall, outperforming existing methods such as Inception-V3, MLP, SimpleRNN, 363 

LSTM, and BiLSTM[53]. 364 

Ahmad et al. in 2023 [54] introduced a method for automatically identifying animals by 365 

detecting their faces and muzzles using the YOLOv7 model, followed by extracting muzzle 366 

pattern features with the SIFT (Scale-Invariant Feature Transform) algorithm. The extracted 367 

features were then matched against a database using the FLANN (Fast Library for 368 

Approximate Nearest Neighbors) algorithm. The method achieved over 99.5% accuracy in 369 

cow identification and demonstrated a lightweight structure and real-time performance, 370 
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making it suitable for embedded systems or mobile devices. Deep learning often relies on 371 

high-performance computing devices, limiting its application in mobile devices. However, as 372 

the use of small mobile devices has become more widespread, recent studies [43, 44, 54] 373 

have focused on improving detection accuracy and speed while reducing computational costs 374 

or quickly and accurately detecting obstacles in outdoor environments [44, 69-72]. Similar 375 

research has also begun in the field of livestock face recognition. 376 

 377 

Summary 378 

This review examines contactless techniques for animal face recognition, identification, 379 

and re-identification. In the data collection phase, animal face images are captured under 380 

various angles and lighting conditions, and data preprocessing normalizes the images to 381 

enhance the efficiency and accuracy of model training. Data augmentation and transfer 382 

learning (e.g., using pre-trained models like VGG and ResNet) are employed to address data 383 

scarcity, followed by fine-tuning to adapt the models to specific animal datasets. The 384 

integration of video processing and CNN-based deep learning presents a highly promising 385 

approach for precision livestock farming. These technologies enhance production efficiency, 386 

improve animal welfare, and reduce environmental impact. They provide accurate and 387 

efficient tools for growth estimation, individual identification, and behavior monitoring, 388 

driving innovation in livestock management. 389 

 390 

391 
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Table 1. Recent research regarding recognition/identification/re-identification 591 

Research areas Reference  Target animal Dataset Pre-trained/Transfer 

Learning Status 

Feature  Algorithm  

Wildlife 

recognition 

[34] Wildlife Wildlife 

Spotter 
× − 

Lite AlexNet, VGG-16, ResNet50 

[35] Wildlife Fishmarket, 

MS COCO 

2017 

× − 

WildARe-YOLO 

Wildlife face 

recognition 

[37] Chimpanzee Self-created 

dataset 
× 

Annotation Automation 

Framework 

SSD, CNN 

[33] Giant panda Self-created 

dataset, 

ImageNet 

○ 

Pre-trained AlexNet, GoogLeNet, 

ResNet-50, VGG-16 

NIPALS, 

[29] Panda  Self-created 

dataset, 

COCO 

○ 

Pre-trained Faster R-CNN, fine-

tuned ResNet-50 

DNN 

[47] Golden snub-

nosed monkey  

Self-created 

dataset 
× − 

Faster-RCNN 

Livestock face 

recognition 

[32] Pig Self-created 

dataset 
× 

Automatic selection of training and 

testing data 

Haar cascade, Deep CNN 

[39] Sheep   × − YOLOv5s, RepVGG 

[36] Aberdeen-

Angus cow 

Self-created 

dataset 
○ 

Pre-trained VGGFACE, 

VGGFACE2 
− 

[42] Cattle  Self-created 

dataset 
x 

Embedded system,  automatically 
processing datasets 

CNN 

[43] Cattle  Self-created 

dataset 
x 

channel pruning 
YOLOv5 

identification [45] Cattle  × − Inception-V3 CNN, LSTM 

[51] Cattle  ImageNet, 

COCO 
x 

Mobile devices YOLOv5,  ResNet18 Landmark 

[53] Horse, etc. THDD 

dataset 
○ 

Hybrid YOLOv7, SIFT, FLANN 

Re-identification [48] Amur tiger ATRW, 

ImageNet 
○ 

Pre-trained SSD-MobileNet-v1, 

SSD-MobileNet-v2, DarkNet 

YOLOv3 
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Figure 1. Animal face recognition/identification processing 592 
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