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Effect of Breed Composition in Genomic Prediction Using 9 

Crossbred Pig Reference Population 10 

 11 

Abstract 12 

In contrast to conventional genomic prediction, which typically targets a single breed and circumvents the 13 

necessity for population structure adjustments, multi-breed genomic prediction necessitates accounting for 14 

population structure to mitigate potential bias. The presence of this structure in multi-breed datasets can influence 15 

prediction accuracy, rendering proper modeling crucial for achieving unbiased results. This study aimed to address 16 

the effect of population structure on multi-breed genomic prediction, particularly focusing on crossbred reference 17 

populations. The predictive accuracy of genomic models was assessed by incorporating genomic breed 18 

composition (GBC) or principal component analysis (PCA) into the genomic best linear unbiased prediction 19 

(GBLUP) model. The accuracy of five different genomic prediction models was evaluated using data from 354 20 

Duroc  Korean native pig crossbreds, 1,105 Landrace  Korean native pig crossbreds, and 1,107 Landrace  21 

Yorkshire  Duroc crossbreds. The models tested were GBLUP without population structure adjustment, GBLUP 22 

with PCA as a fixed effect, GBLUP with GBC as a fixed effect, GBLUP with PCA as a random effect, and GBLUP 23 

with GBC as a random effect. The highest predictive accuracies for backfat thickness (0.59) and carcass weight 24 

(0.50) were observed in Models 1, 4, and 5. In contrast, Models 2 and 3, which included population structure as a 25 

fixed effect, exhibited lower accuracies, with backfat thickness accuracies of 0.40 and 0.53 and carcass weight 26 

accuracies of 0.34 and 0.38, respectively. These findings suggest that in multi-breed genomic prediction, the most 27 

efficient and accurate approach is either to forgo adjusting for population structure or, if adjustments are necessary, 28 

to model it as a random effect. This study provides a robust framework for multi-breed genomic prediction, 29 

highlighting the critical role of appropriately accounting for population structure. Moreover, our findings have 30 

important implications for improving genomic selection efficiency, ultimately enhancing commercial production 31 

by optimizing prediction accuracy in crossbred populations. 32 

Keywords: genomic breed composition, genomic prediction, multi-breed genomic prediction, population 33 

structure  34 
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Introduction 35 

Accurate prediction of genomic breeding values is a critical component of successful genomic selection, which 36 

requires a sufficiently large reference population to reliably estimate marker effects [1]. However, small 37 

populations, such as Jersey cattle, often pose challenges owing to the limited reference populations of progeny-38 

tested bulls, leading to less reliable genomic breeding values [2]. Consequently, genetic progress is restricted in 39 

breeds without a large reference population. One approach to addressing this limitation is across-breed prediction, 40 

which involves the use of a large reference dataset from another breed [3]. Another approach is multi-breed 41 

prediction, which combines data from multiple breeds to create a larger, more comprehensive dataset [3]. Both 42 

approaches can enhance prediction accuracy for smaller breeds, helping them become more competitive while 43 

minimizing the additional costs associated with genotyping and phenotyping.  44 

Empirical studies have demonstrated that the accuracy of across-breed genomic prediction is often near zero 45 

and that combining multiple breeds has not yielded significant improvements in accuracy [3, 4]. However, these 46 

methods remain promising, particularly when combined with strategies that account for population structure and 47 

other sources of variation [5, 6]. Addressing population structure, also referred to as population stratification, is 48 

critical for genomic prediction across different breeds. Population structure arises from differences in allele 49 

frequencies between subpopulations, which may result from geographic separation, or natural or artificial 50 

selection [7]. These differences can lead to spurious marker-trait associations [8, 9], potentially inflating estimates 51 

of genomic heritability [10] and introducing bias into genomic prediction accuracy [6].  52 

To mitigate the effects of population structure, it is important to model it appropriately within genomic 53 

prediction models, particularly when combining data from multiple breeds. A common method involves 54 

incorporating principal components (PCs) derived from genomic data as a fixed effect in the prediction model [7]. 55 

However, incorporating PCs as a fixed effect can result in over-correction, as these components are derived from 56 

the genomic relationship matrix used in genomic prediction [11]. To address this limitation, in this study, PCs 57 

were modeled as a random effect to capture population structure without confounding the genomic relationship 58 

matrix. The predictive accuracy of these models was compared with those of models in which PCs were excluded. 59 

Additionally, breed composition, another explanatory factor for population structure, was modeled as either a 60 

fixed or random effect to adjust for population structure.  61 

In this study, we evaluated the accuracy of genomic predictions using models that incorporated breed 62 
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composition and PCs as fixed and random effects and compared the results with those of a baseline model. This 63 

study aimed to determine whether accounting for population structure using breed composition or PCs can 64 

improve genomic prediction accuracy. The findings of this study may provide valuable insights into optimizing 65 

genomic prediction models for populations with complex or diverse structures. 66 

 67 

Materials and Methods 68 

Animals, genotypes, and phenotypes 69 

The genotype dataset comprised data from 354 Duroc  Korean native pigs (DK), 1,105 Landrace  Korean 70 

native pigs (LK), 1,017 Landrace  Yorkshire  Duroc (LYD) crossbreds, along with purebred animals. Crossbred 71 

individuals were genotyped using the Illumina PorcineSNP60 Genotyping BeadChip, whereas genotype data for 72 

purebred animals were provided by the Centre for Research in Agricultural Genomics [12]. Genotype data for the 73 

Korean native pigs (KNPs) among the purebreds were provided by the National Institute of Animal Science in 74 

Korea. Details regarding the number of animals, single nucleotide polymorphisms (SNPs), and average observed 75 

heterozygosity rate for each breed are presented in Supplementary Table 1. The quality control process involved 76 

the exclusion of SNPs located on sex chromosomes, with a genotype call rate below 90%, and with a minor allele 77 

frequency below 1%. After merging datasets and applying the quality control process, a common set of 24,118 78 

SNPs were retained for analysis. 79 

Phenotypic data revealed differences in backfat thickness and carcass weight among the breeds. The LYD breed 80 

exhibited the lowest backfat thickness, whereas the DK breed had the highest backfat thickness. Conversely, the 81 

DK breed exhibited the lowest carcass weight, whereas LYD had the highest carcass weight. The carcass 82 

performance of the breeds crossed with the KNP was lower than that of LYD. This finding aligns with the known 83 

characteristics of the KNP breed, which is known for its good meat quality but poor growth rate [13]. Statistical 84 

details for the phenotypes are provided in Supplementary Table 2. 85 

 86 

Principal Component Analysis 87 

Principal component analysis (PCA) was employed to investigate genetic differences between populations and 88 
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to correct for population structure. PCA simplifies data complexity while maintaining the underlying relationships 89 

among the data points. When applied to biallelic genotype data, PCA identifies the eigenvalues and eigenvectors 90 

of the covariance matrix of allele frequencies, thereby reducing the data to a limited number of dimensions known 91 

as PCs. Each PC represents a proportion of the total genomic variation. Subsequently, the data are mapped onto 92 

the space defined by these PC axes, facilitating the visualization of samples and their distances from each other 93 

in a scatter plot. In this visualization, sample overlap indicates shared genetic identity, reflecting common ancestry 94 

or origin [14].  95 

 96 

Genomic Breed Composition 97 

Genomic breed composition (GBC) was estimated from genomic data using a maximum likelihood model 98 

implemented in ADMIXTURE v1.3.0 [15]. ADMIXTURE uses genotype data to cluster individuals into 99 

subgroups based on a predetermined number of groups. The projection extension of the ADMIXTURE program 100 

allows for estimating ancestry using predefined ancestral population allele frequencies. This extension enables 101 

efficient ancestry inference across large genomic datasets, leveraging allele frequencies from reference panels, 102 

such as the 1000 Genomes Project. Additionally, the projection approach is particularly advantageous for datasets 103 

with significant population distribution imbalances, as such imbalances can adversely affect the accuracy of 104 

ancestry inference [16]. 105 

The projection extension of the ADMIXTURE program was used to analyze the dataset owing to the imbalance 106 

between purebred and crossbred samples. Ancestral population allele frequencies were estimated using the 107 

purebred samples, whereas the GBC values of the crossbreds were estimated using the allele frequencies of the 108 

purebreds. 109 

 110 

Statistical Models 111 

First, PCs and GBCs were calculated for each individual, which were subsequently used in five models to 112 

predict genomic estimated breeding values (GEBV). Although additional fixed effects such as age and farm were 113 

considered, age information was unavailable, and farm data showed high multicollinearity with the PC and GBC 114 

values, which precluded their inclusion.  115 
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 Model 1 (NULL) is defined as follows: 116 

𝐲 = 𝐗𝐛 + 𝐙𝐠 + 𝐞, 117 

where y represents the vector of trait records (backfat thickness or carcass weight); b indicates the vector of 118 

fixed effects, including sex; X denotes the design matrix linking fixed effects to the records; g represents the 119 

vector of random genetic effects, modeled as ~ 𝑁(0, 𝐆𝜎𝑔
2), with G being the genomic relationship matrix and 𝜎𝑔

2 120 

being the genetic variance captured by the SNPs; Z indicates the design matrix linking records to animals; and e 121 

denotes the vector of random deviations, modeled as ~ 𝑁(0, 𝐈𝜎𝑒
2), with I as an animal-by-animal identity matrix 122 

and 𝜎𝑒
2 representing the error variance. The GEBV for this model was predicted as 𝐆𝐄𝐁𝐕 = �̂�. The genomic 123 

relationship matrix was constructed using GCTA v1.94.1 software according to the following equation [17]:  124 

𝐆𝑗𝑘 =
1

𝑁
∑

(𝑥𝑖𝑗 − 2𝑝𝑖)(𝑥𝑖𝑘 − 2𝑝𝑖)

2𝑝𝑖(1 − 𝑝𝑖)

𝑁

𝑖=1

, 125 

where 𝑥𝑖𝑗 and 𝑥𝑖𝑘 represent the genotypes (coded as 0, 1, or 2) of individuals j and k at SNP i. 𝑝𝑖 indicates the 126 

allele frequency of SNP i, and N denotes the total number of SNPs. The distribution of the diagonal and off-127 

diagonal elements of the genomic relationship matrix is shown in Supplementary Figure 1. The mean of the 128 

diagonal elements is 1.03, indicating low inbreeding within the population. The mean of the off-diagonal elements 129 

is 0, showing that individuals are genetically independent of each other. 130 

 Model 2 (PC_F) is defined as follows: 131 

𝐲 = 𝐗𝐛 + 𝐙𝐠 + 𝐞, 132 

where y represents the vector of trait records; b denotes the vector of fixed effects, which includes PC values (20 133 

PCs) and sex; X indicates the design matrix linking fixed effects to records; g represents the vector of random 134 

genetic effects; Z denotes the design matrix linking records to animals; and e indicates the vector of random 135 

deviations. For this model, 𝐆𝐄𝐁𝐕 = �̂�. 136 

 Model 3 (GBC_F) is defined as follows: 137 

𝐲 = 𝐗𝐛 + 𝐙𝐠 + 𝐞, 138 

where y represents the vector of trait records; b denotes the vector of fixed effects, which includes GBC values 139 

and sex (here, breed composition values represent the proportion of each individual’s genome derived from the 140 
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four breeds: Duroc, KNP, Landrace, and Yorkshire); X indicates the design matrix linking fixed effects to records; 141 

g represents the vector of random genetic effects; Z denotes the design matrix linking records to animals; and e 142 

indicates the vector of random deviations. For this model, 𝐆𝐄𝐁𝐕 = �̂�. 143 

 Model 4 (PC_R) is defined as follows: 144 

𝐲 = 𝐗𝐛 + 𝐙𝐠 + 𝐙𝐩𝐜 + 𝐞, 145 

where y indicates the vector of trait records; b represents the vector of fixed effects, including sex; X denotes the 146 

design matrix linking fixed effects to records; g indicates the vector of random genetic effects; pc denotes the 147 

vector of random variables representing groups of PC values, which were clustered using the Gaussian Mixture 148 

Model implemented in the ‘mclust’ R package [18]; Z indicates the design matrix linking records to animals; and 149 

e denotes the vector of random deviations. For this model, 𝐆𝐄𝐁𝐕 = �̂� + 𝐩�̂�. 150 

 Model 5 (GBC_R) is defined as follows:  151 

𝐲 = 𝐗𝐟 + 𝐙𝐠 + 𝐙𝐠𝐛𝐜 + 𝐞, 152 

where y represents the vector of trait records; b denotes the vector of fixed effects, including sex; X indicates 153 

the design matrix linking fixed effects to records; g represents the vector of random genetic effects; gbc denotes 154 

the vector of random variables representing groups of GBC values, which were clustered using the Gaussian 155 

Mixture Model implemented in the ‘mclust’ R package [18]; Z indicates the design matrix linking records to 156 

animals; and e represents the vector of random deviations. For this model, 𝐆𝐄𝐁𝐕 = �̂� + 𝐠𝐛�̂�. 157 

Variance components were estimated using the restricted maximum likelihood (REML) method, as 158 

implemented in MTG2 [19], for each model. Heritability for the traits was estimated using the formula ℎ2 =159 

𝜎𝑔
2̂/(𝜎𝑔

2̂ + 𝜎𝑒
2̂) . The accuracy of GEBVs for each of the five models was calculated as 𝑟(𝐆𝐄𝐁𝐕, 𝐲) , where y 160 

represents the phenotypes corrected for fixed effects [20]. A 5-fold cross-validation approach was used to validate 161 

the models. In this method, animals were randomly divided into five groups, with each group treated as the 162 

validation set while the remaining groups constituted the reference set. 163 

 164 

Results 165 
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Principal Components Analysis 166 

PCA was performed to explore genetic structure across populations. The analysis revealed that the first PC 167 

(PC1) accounted for 43.9% of the total genetic variance, whereas the second PC (PC2) constituted 13.6% of the 168 

variance (Figure 1). The PCA plot revealed a clear separation among the crossbred populations, indicating distinct 169 

genetic backgrounds. However, the LYD population exhibited greater dispersion along the first two PCs, 170 

suggesting more considerable genetic variation within this group. This observed variation is likely attributed to 171 

the presence of F1 hybrids in the dataset, which primarily combined Landrace and Yorkshire genetics, thereby 172 

increasing the overall diversity observed in this population.  173 

 174 

Genomic Breed Composition 175 

The breed composition of the crossbred populations was evaluated using ADMIXTURE analysis; the results 176 

are depicted in Figure 2. The analysis was conducted in unsupervised mode using genomic data from purebred 177 

samples, and the estimated breed allele frequencies were subsequently used to infer breed membership coefficients 178 

for the crossbred individuals.  179 

In the LYD population, the estimated breed composition revealed an average contribution of 31%, 33%, and 180 

36% from Landrace, Yorkshire, and Duroc, respectively (Table 1). The presence of F1 animals, as indicated by 181 

the PCA, was corroborated by the breed composition analysis, where the contribution of the Landrace and 182 

Yorkshire breeds showed that the F1 crossbreds were indeed hybrids of these two pure breeds. The variation in 183 

breed composition within the LYD population was not substantial, with standard deviations of 0.13, 0.12, and 184 

0.19 for Landrace, Yorkshire, and Duroc, respectively. Similarly, the DK and LK populations exhibited balanced 185 

breed compositions. In the DK population, the average breed composition was 63% Duroc and 37% KNP, with 186 

minimal variation between individuals (SD = 0.05 for both breeds). The LK population had an average 187 

composition of 61% Landrace and 39% KNP, and low variation was also observed across individuals (SD = 0.06 188 

for both breeds). These results suggest that the parental breeds had relatively balanced genetic contributions, as 189 

evidenced by the minimal variation in breed composition between individuals within the DK and LK populations. 190 

 191 

Genetic Parameter Estimates 192 
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Heritability estimates for backfat thickness and carcass weight were derived from five different models; the 193 

associated variance components are detailed in Table 2. The estimates of genetic additive variance (𝑉𝑔) and error 194 

variance (𝑉𝑒) were used to calculate heritability for each trait.  195 

Model 1 (NULL), which did not account for population structure, yielded the highest heritability estimates, 196 

with a heritability value of 0.44  0.03 for backfat thickness and 0.31  0.03 for carcass weight. The elevated 197 

heritability estimates for this model may be attributed to its lack of adjustments for potential confounding factors 198 

related to breed differences. Models 2 (PCA_F) and 3 (GBC_F), which incorporated population structure as a 199 

fixed effect, yielded lower heritability estimates; Model 2 estimated heritability for backfat thickness at 0.41  200 

0.03 and carcass weight at 0.26  0.03, whereas Model 3 estimated these factors at 0.44  0.03 and 0.27  0.03, 201 

respectively. These reductions in heritability suggest that accounting for population structure as a fixed effect can 202 

decrease the perceived genetic influence on the traits. Models 4 (PCA_R) and 5 (GBC_R) included additional 203 

genetic variance components (𝑉𝑝𝑐 and 𝑉𝑔𝑏𝑐) to account for population structure as a random effect. In Model 4, 204 

the genetic variance (𝑉𝑔) was estimated at 13.2  1.3 and 𝑉𝑝𝑐 at 1.6  1.7 for backfat thickness, contributing an 205 

additional heritability of 0.05  0.05 to the base estimate of 0.41  0.04. For carcass weight, 𝑉𝑔 was estimated at 206 

28.1  3.6 and 𝑉𝑝𝑐 at 23.7  15.1, contributing an additional heritability of 0.19  0.1 to the base estimate of 0.23 207 

 0.04. Model 5 demonstrated similar patterns, although 𝑉𝑔𝑏𝑐 for backfat thickness was close to zero. These 208 

models typically yielded heritability estimates similar to those of Model 1 for backfat thickness; however, for 209 

carcass weight, they provided a more nuanced understanding of genetic effects by accounting for population 210 

structure as a separate effect.  211 

 212 

Accuracy of Genomic Estimated Breeding Values 213 

The accuracy of GEBVs was evaluated using five models; the results are summarized in Table 3 and depicted 214 

in Figure 3. Model 1 (NULL), Model 4 (PCA_R), and Model 5 (GBC_R) exhibited the highest accuracy for 215 

predicting both backfat thickness and carcass weight. These models achieved an average accuracy of 0.59 for 216 

backfat thickness and 0.50 for carcass weight, with minimal variation across replicates (SD = 0.01 for backfat 217 

thickness and between 0.03 to 0.04 for carcass weight).  218 

Models that incorporated population structure as a fixed effect (Models 2 and 3) demonstrated lower accuracies 219 
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for GEBVs. For backfat thickness, Model 2 (PCA_F) achieved a mean accuracy of 0.40  0.03, whereas Model 3 220 

(GBC_F) yielded a mean accuracy of 0.53  0.04. The accuracy for carcass weight in these models was reduced 221 

similarly, with Model 2 achieving an accuracy of 0.34  0.03 and Model 3 yielding an accuracy of 0.38  0.02. 222 

These results suggest that modeling population structure as a fixed effect captures population differences but 223 

compromises GEBV accuracy. In contrast, modeling population structure as a random effect captures genetic 224 

variation due to breed differences without adversely affecting GEBV accuracy. 225 

The Spearman rank correlation coefficient of GEBV between all models showed that all models were highly 226 

correlated with each other (except Model 2 in backfat thickness), ranging from 0.59 to 0.60. In carcass weight, 227 

Models 1, 4, and 5 had high Spearman correlation coefficients with each other, but models 2 and 3 had low 228 

correlation coefficients with the other models, ranging from 0.39 to 0.70 (Figure 4). Models that did not correct 229 

for population structure and models that corrected for population structure as a random effect had similar genomic 230 

prediction patterns.  231 

 232 

Discussion 233 

In multi-breed genomic predictions, using a reference population that encompasses multiple breeds inevitably 234 

introduces differences in population structure across these breeds. Therefore, this study aimed to assess prediction 235 

accuracy while adjusting population structure as either a fixed or random effect in multi-breed genomic predictions. 236 

The findings revealed that adjusting for population structure as a fixed effect resulted in decreased accuracy, 237 

whereas treating it as a random effect did not yield any improvements in accuracy. These results suggest that in 238 

multi-breed genomic predictions, the genomic relationship matrix sufficiently accounts for population structure, 239 

indicating that a model without adjustments for population structure is the most efficient.  240 

 241 

Genotypic versus pedigree-based breed composition 242 

GBC highlights the superior accuracy of genotypic data over that of pedigree information in determining breed 243 

composition. Pedigree records often contain inaccuracies or are incomplete, which can result in erroneous breed 244 

composition estimates [21, 22]. In contrast, using genomic data with tools such as ADMIXTURE provides a more 245 
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precise assessment [23]. The findings of this study revealed that the breed compositions calculated using 246 

ADMIXTURE closely aligned with those expected from complete pedigree records, thereby corroborating 247 

previous research that emphasizes the reliability of genomic data for estimating breed composition in admixed 248 

populations [23]. 249 

 250 

Effect of population structure on genomic estimated breeding values 251 

The effect of population structure on the estimation of genetic parameters is a well-established concern in 252 

genomic studies. Population structure can lead to false-positive associations [24], which may result in inflated 253 

heritability estimates [10] and biased accuracies in genomic predictions [6]. To address this issue, this study 254 

incorporated PCs and GBCs into GBLUP models as fixed or random effects.  255 

Notably, the inclusion of PCs or GBCs as fixed effects resulted in decreased accuracy of GEBVs compared to 256 

those of models that excluded these factors. This reduction in accuracy may stem from the redundancy between 257 

the information provided by these variables and that captured by the genomic relationship matrix. Essentially, the 258 

genomic relationship matrix already encompasses much of the population structure information; therefore, adding 259 

PCs or breed composition as fixed effects could result in double-counting, leading to overcorrection and reduced 260 

model accuracy [11, 25]. In contrast, treating PCs and GBC as random effects did not yield any improvement in 261 

prediction accuracy. This result suggests that the additional genetic variance components captured by these 262 

random effects did not provide significant new information beyond what was already accounted for by the 263 

genomic relationship matrix. Similarly, previous studies have demonstrated that incorporating population 264 

structure as a random effect does not enhance the accuracy of genomic predictions [25]. However, the advantage 265 

of including breed as a random effect within the model, as GEBVs are divided into two components. Specifically, 266 

a model with a random effect splits the genetic variance into within-breed and across-breed GEBVs, thereby 267 

facilitating the understanding of how predictions differ within and across breeds [25].  268 

These findings hold significant implications for the optimal design of genomic prediction models. Although 269 

accounting for population structure is crucial to avoid biases, these results indicate that the genomic relationship 270 

matrix within the GBLUP framework sufficiently captures the required information. Consequently, additional 271 

adjustments for population structure, whether as fixed or random effects, may be unnecessary and could even 272 

negatively affect prediction accuracy. These findings support the growing consensus that simpler models that rely 273 
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on the genomic relationship matrix without further correction for population structure are often the most effective 274 

[25]. 275 

This study focused on carcass traits and therefore did not explicitly include heterozygosity, even though 276 

crossbred animals were used. However, recent findings suggest that including heterozygosity in genomic 277 

predictions for maternal traits can improve prediction accuracy [26]. Therefore, future research on maternal traits 278 

in genomic prediction models may benefit from considering heterozygosity as a factor to further enhance 279 

prediction accuracy.  280 

Implications for multi-breed genomic prediction 281 

Our findings have significant implications in the field of multi-breed genomic prediction. This study 282 

demonstrated that the genomic relationship matrix alone could effectively capture breed differences within multi-283 

breed populations, thereby eliminating the necessity for additional corrections for population structure. This 284 

circumvention is particularly advantageous in multi-breed contexts, where genetic relationships among breeds can 285 

vary widely, facilitating accurate predictions of breeding values for selection decisions.  286 

Given the observed decrease in accuracy when population structure was included as a fixed effect, future studies 287 

and practical applications of genomic prediction should prioritize models that incorporate the genomic 288 

relationship matrix as the primary tool for capturing genetic variance. This approach is more straightforward and 289 

ensures higher accuracy in predicting breeding values, which is crucial for effectively managing and improving 290 

crossbred populations.  291 

In conclusion, this study underscores the robustness of the genomic relationship matrix in accounting for 292 

population structure within multi-breed genomic prediction. The findings suggest that, although population 293 

structure is an important consideration, the genomic relationship matrix is sufficient for capturing the relevant 294 

genetic variance, modeling additional corrections unnecessary. This insight is valuable for optimizing genomic 295 

prediction models in crossbred populations and enhancing the accuracy of GEBV predictions. 296 

  297 
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Tables 356 

Table 1. Genomic breed composition by breeds. 357 

Population Breed Min Median Max Mean SD 

Landrace × 

Yorkshire × 

Duroc 

Landrace 0.06 0.27 0.90 0.31 0.13 

Yorkshire 0.05 0.30 0.89 0.33 0.12 

Duroc 0 0.43 0.75 0.36 0.19 

Duroc  KNP Duroc 0.49 0.63 0.75 0.63 0.05 

KNP 0.25 0.37 0.51 0.37 0.05 

Landrace  

KNP 

Landrace 0.43 0.62 0.75 0.61 0.06 

KNP 0.25 0.38 0.57 0.39 0.06 
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Table 2. Variance components and heritability estimates from five models for backfat thickness 360 

and carcass weight traits. Variance components are the genetic additive variance (𝑽𝒈) and the 361 

error variance (𝑽𝒆). In addition, the Model 4 (PC_R) and the Model 5 (GBC_R) estimates 362 

additional genetic variance components (𝑽𝒑𝒄 and 𝑽𝒈𝒃𝒄). 363 

Model Variance components Heritabilities 

Backfat 

thickness 

(mm) 

Carcass 

weight (kg) 

Backfat 

thickness 

(mm) 

Carcass 

weight (kg) 

1 (NULL) 𝑽𝒈  13.5  1.3 31.4  3.6 0.44  0.03 0.31  0.03 

𝑽𝒆  17.1  0.8 69.2  2.7   

2 (PC_F) 𝑽𝒈  12.1  1.3 24.9  3.7 0.41  0.03 0.26  0.03 

𝑽𝒆  17.5  0.8 71.3  2.8   

3 (GBC_F) 𝑽𝒈  13.7  1.3 26.0  3.4 0.44  0.03 0.27  0.03 

𝑽𝒆  17.1  0.8 70.6  2.7   

4 (PC_R) 𝑽𝒈  13.2  1.3 28.1  3.6 0.41  0.04 0.23  0.04 

𝑽𝒑𝒄  1.6  1.7 23.7  15.1 0.05  0.05 0.19  0.1 

𝑽𝒆  17.2  0.8 69.9  2.7   

5 (GBC_R) 𝑽𝒈  13.5  1.3 27.1  3.5 0.44  0.03 0.23  0.04 

𝑽𝒈𝒃𝒄  0.2  0.3 22.3  14.3 0 0.19  0.1 

𝑽𝒆  17.1  0.8 70.2  2.8   
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Table 3. Mean and standard deviation of GEBV accuracy for five prediction methods. 366 

Model 

Backfat thickness (mm) Carcass weight (kg) 

Mean  SD Mean SD 

1 (NULL) 0.59 0.01 0.50 0.04 

2 (PCA_F) 0.40 0.03 0.34 0.03 

3 (GBC_F) 0.53 0.04 0.38 0.02 

4 (PCA_R) 0.59 0.01 0.50 0.03 

5 (GBC_R) 0.59 0.01 0.50 0.03 

 367 
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Figures 370 

 371 

 372 

Figure 1. Population distribution across the first and second principal components.  373 
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 375 

Figure 2. Bar plot of the Q matrix from an ADMIXTURE run, showing the proportion of the genome 376 

contributed by each breed. A shows the LYD population, B shows the DK population, and C shows the LK 377 

population. Each vertical bar represents an individual.  378 
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 380 

Figure 3. GEBV accuracy of five prediction models. From left to right, the models are Model 1 (NULL), 381 

Model 2 (PCA_F), Model 3 (GBC_F), Model 4 (PCA_R), and Model 5 (GBC_R). The dots represent the 382 

average accuracy, and the lines indicate the standard deviation.  383 
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 385 

Figure 4. Spearman correlation between models. A represents backfat thickness and B 386 

represents carcass weight. 387 
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