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Abstract 23 

High-throughput genotyping and sequencing has revolutionized animal breeding by 24 

providing access to vast amounts of genomic data to facilitate precise selection for desirable 25 

traits. This shift from traditional methods to genomic selection provides dense marker 26 

information for predicting genetic variants. However, the success of genomic selection heavily 27 

depends on the accuracy and quality of the genomic data. Inaccurate or low-quality data can 28 

lead to flawed predictions, compromising breeding programs and reducing genetic gains. 29 

Therefore, stringent quality control (QC) measures are essential at every stage of data 30 

processing. Quality control in genomic data involves managing single nucleotide 31 

polymorphism (SNP) quality, assessing call rates, and filtering based on minor allele frequency 32 

(MAF) and Hardy-Weinberg equilibrium (HWE). High-quality SNP data is crucial because 33 

genotyping errors can bias the estimates of breeding values. Cost-effective low-density 34 

genotyping platforms often require imputation to deduce missing genotypes. QC is vital for 35 

genomic selection, genome-wide association studies (GWAS), and population genetics 36 

analyses because it ensures data accuracy and reliability. This paper reviews QC strategies for 37 

genomic data and emphasizes their applications in animal breeding programs. By examining 38 

various QC tools and methods, this review highlights the importance of data integrity in 39 

achieving successful outcomes in genomic selection, GWAS, and population analyses. 40 

Furthermore, this review covers the critical role of robust QC measures in enhancing the 41 

reliability of genomic predictions and advancing animal breeding practices. 42 

 43 

Key words: Animal Breeding, Genomic Selection, Quality Control, Single Nucleotide 44 

Polymorphism, Genome-Wide Association Studies 45 

 46 
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Introduction 47 

The rapid evolution of genomic technologies has transformed the landscape of animal 48 

breeding. High-throughput genotyping and sequencing provides breeders with access to vast 49 

amounts of genomic data and enables the precise selection of desirable traits [1]. These 50 

advancements have shifted traditional breeding methods to genomic selection, which leverages 51 

dense marker information to predict the genetic variants of individuals [2]. However, the 52 

success of genomic selection depends heavily on the accuracy and quality of the genomic data. 53 

Inaccurate or low-quality data can lead to inaccurate predictions that can compromise breeding 54 

programs and reduce their genetic gains [3]. Therefore, to ensure reliable predictions and 55 

maximize the potential of genomic selection, it is essential to implement stringent quality 56 

control (QC) measures at every stage of data processing. 57 

Genomic data quality control has several key components including the management of 58 

single nucleotide polymorphism (SNP) quality, the assessment of call rates, and filtering based 59 

on minor allele frequency (MAF) and Hardy-Weinberg equilibrium (HWE) [4]. High-quality 60 

SNP data is indispensable because errors in genotyping can lead to biased estimates of breeding 61 

values, which decreases the effectiveness of selection strategies [5]. Moreover, cost-effective 62 

low-density genotyping platforms often suffer from incomplete marker data so it is necessary 63 

to use imputation to deduce the missing genotypes [6]. 64 

Quality control processes are crucial for genomic selection, genome-wide association 65 

studies (GWAS), and population genetics analyses. These processes help ensure that the 66 

genomic data is accurate, reliable, and free from biases introduced by genotyping errors, 67 

population stratification, or other confounding factors [7, 8]. This paper reviews quality control 68 

(QC) strategies for genomic data and their applications in animal breeding programs. By 69 

examining various QC tools and methods, this paper aims to show the critical role that data 70 

ACCEPTED



 

5 

integrity plays in achieving successful outcomes in genomic selection, GWAS, and population 71 

analyses [4, 5]. 72 

 73 

Genotyping methods 74 

Whole-genome Sequencing (WGS) 75 

Whole-genome sequencing is a comprehensive method for analyzing the entire genome. 76 

Due to the decreased cost of sequencing and the ability to produce large amounts of genomic 77 

data, whole-genome sequencing has become a powerful tool for genomic research. SNP calling 78 

from WGS genomic data involves a series of critical steps to ensure accurate identification of 79 

genetic variants. The process starts with raw data preprocessing, where tools like FastQC 80 

evaluate the read quality [9]. This step is followed by trimming to remove adapters and low-81 

quality bases by using either Trimmomatic or Cutadapt [10, 11].  82 

The cleaned reads are then aligned to a reference genome with BWA-MEM or Bowtie2 to 83 

generate SAM/BAM files [12, 13]. These files are subsequently sorted, indexed, and processed 84 

to mark PCR duplicates with Samtools, while the base quality scores are recalibrated using 85 

GATK [14, 15]. Variant calling is performed using tools such as GATK’s HaplotypeCaller, 86 

FreeBayes, or Bcftools, which identify SNPs based on differences between the sequenced reads 87 

and the reference genome [15, 16, 17]. 88 

In post-calling, variants undergo filtering to remove false positives via GATK’s hard 89 

filtering or Variant Quality Score Recalibration (VQSR). The filtered SNPs are then annotated 90 

with functional information using tools like ANNOVAR or SnpEff [18, 19]. Quality checks 91 

include the use of VCFtools for statistical analysis and IGV for visualization, and ensure the 92 

reliability of the called SNPs [16, 20]. Joint genotyping across multiple samples and using 93 

population-specific reference panels are recommended to enhance the accuracy of SNP calling 94 
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in WGS. 95 

 96 

SNP arrays 97 

SNP arrays have significantly advanced genomic research in animal science by enabling 98 

the large-scale genotyping of SNPs. The development of SNP arrays began in the early 2000s 99 

to meet the demand for efficient and cost-effective methods to genotype large numbers of SNPs 100 

across the genome [21, 22]. Early arrays marked a significant advancement by allowing 101 

simultaneous genotyping of thousands of SNPs, facilitating genome-wide association studies 102 

(GWAS) and the study of genetic variation in populations [21].  103 

Over time, these arrays have evolved to include higher-density SNPs to improve coverage 104 

and accuracy, as seen in the Illumina BovineSNP50 array which has become a standard tool in 105 

cattle genomics [23, 24]. Today, SNP arrays are essential for selecting desirable traits, 106 

estimating genetic merit, and managing inbreeding in animal breeding [1, 2]. Quality control 107 

of SNP array data is crucial for ensuring accurate and reliable results, and involves assessing 108 

call rates, filtering based on minor allele frequency (MAF), and checking for Hardy-Weinberg 109 

equilibrium [4]. Tools such as PLINK and GenomeStudio are commonly used in these QC 110 

processes [5, 25]. 111 

 112 

QC in animal genomics 113 

Minor Allele Frequency (MAF) 114 

Minor allele frequency is a key metric in genetic studies. It represents the frequency at 115 

which the less common allele occurs in a given population. MAF is important for identifying 116 

rare variants which may not significantly contribute to overall genetic variation but can be 117 

crucial in specific contexts. MAF is calculated by determining the frequency of both alleles at 118 
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a locus and taking the minimum of these two values. For example, if allele A has a frequency 119 

of 0.8 and allele a has a frequency of 0.2, the MAF would be 0.2. SNPs with very low MAFs, 120 

typically below 0.01 or 0.05, are often excluded from analyses because they may represent 121 

sequencing errors or lack statistical power in association studies [5].  122 

Tools like PLINK and VCFtools [5, 16] are widely used to calculate MAF, with PLINK's 123 

--freq command being particularly popular [4]. In animal breeding, many researchers set 124 

threshold values for MAF to balance the need for sufficient variation while minimizing noise 125 

from rare variants. Typically, MAF thresholds in animal breeding studies range from 0.01 to 126 

0.05 depending on the study's objectives and the population structure being analyzed. For 127 

instance, a study on dairy cattle by Pryce et al. [26] and Kim et al. [27] sed a MAF threshold 128 

of 0.01 to ensure that the SNPs included were sufficiently informative for genomic predictions 129 

while also minimizing the influence of rare variants that might lead to spurious associations. 130 

 131 

Call rate 132 

Call rate is another critical quality control metric that measures the proportion of 133 

successfully genotyped samples for a specific SNP. A high call rate indicates that a SNP has 134 

been consistently detected across the sample population, while a low call rate may suggest 135 

issues with the genotyping process, such as poor quality or technical errors [7].  136 

The call rate is calculated by dividing the number of successful genotype calls for a SNP 137 

by the total number of samples, then multiplying by 100 to express it as a percentage.  138 

 139 

𝐶𝑎𝑙𝑙 𝑅𝑎𝑡𝑒 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑑 𝑚𝑎𝑟𝑘𝑒𝑟𝑠 (𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑟𝑘𝑒𝑟𝑠 (𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
× 100 140 

 141 
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For instance, if 95 out of 100 samples have a successful genotype call for a SNP, the call 142 

rate would be 95% [4]. Normally, markers with a call rate less than 95% are removed, though 143 

other studies have set more stringent or lenient thresholds depending on the study design and 144 

objectives. For example, some studies have removed markers with a call rate below 99% to 145 

ensure extremely high data quality[28], while others have used a more relaxed threshold of 90% 146 

when working with larger datasets[29].  147 

Tools like PLINK, SNP & Variation Suite (SVS), and GenomeStudio are widely used for 148 

calculating and filtering SNPs based on call rates because they offer robust functionalities for 149 

quality control in genomic studies. PLINK is particularly popular due to its comprehensive 150 

command-line interface, where the --missing command calculates call rates at both the marker 151 

and sample levels, allowing researchers to easily filter out SNPs and samples that fall below 152 

the desired threshold [5]. SNP & Variation Suite (SVS) offers a user-friendly graphical interface 153 

and integrates various statistical tools, making it ideal for complex datasets and large-scale 154 

studies [30]. GenomeStudio by Illumina is another powerful tool specifically designed for 155 

managing and analyzing genotyping data with features for calculating call rates, identifying 156 

low-quality markers, and visualizing data for further inspection [25]. These tools are essential 157 

for ensuring that only high-quality data is used in subsequent analyses to improve the reliability 158 

of genomic outcomes. 159 

 160 

Hardy-Weinberg Equilibrium 161 

Hardy-Weinberg equilibrium (HWE) is a fundamental principle in population genetics. It 162 

states that allele and genotype frequencies in a population will remain constant from generation 163 

to generation in the absence of evolutionary influences [31]. Testing for HWE is an important 164 

quality control step because deviations from this equilibrium can indicate issues such as 165 
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genotyping errors, population stratification, or selection pressures [32]. To test for HWE, the 166 

observed genotype frequencies are compared to the expected frequencies under equilibrium 167 

conditions. For a biallelic SNP with alleles A and a, the expected genotype frequencies are p2 168 

for AA, 2pq for Aa, and q2 for aa, where p and q represent the allele frequencies [33]. A chi-169 

square test is commonly used to assess whether the differences between the observed and 170 

expected frequencies are statistically significant. Tools like PLINK and VCFtools are used to 171 

perform HWE tests [34]. SNPs that show significant deviation from HWE, typically with a p-172 

value less than 0.001, are often excluded from analyses to prevent biases that could arise from 173 

genotyping errors or other confounding factors [4]. 174 
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Table 1. Tool list for quality control processes 175 

 176 

Application 177 

Tools Function Reference 

GEMMA 
Application of linear mixed models and 

related models to GWAS 
[4] 

PLINK 
Run association analyses and perform QC 

and regression steps 
[5] 

FastQC Quality control checks on raw sequence data [9] 

Trimmomatic Trim and crop FASTQ data [10] 

Cutadapt 
finds and removes adapter sequences, 

primers, poly-A tails 
[11] 

BWA-MEM 
produce multiple primary alignments for 

different part of a query sequence 
[12] 

Bowtie2 
aligning sequencing reads to long reference 

sequences 
[13] 

Samtools 
Manipulate alignments in the SAM, BAM, 

and CRAM formats 
[14] 

GATK Variant calling using sequencing data [15] 

VCFtools 
Summarize, filter out, convert data into 

other file formats 
[16] 

FreeBayes 
Bayesian genetic variant detector designed 

to fine SNPs 
[17] 

SnpEff 
Annotation on genetic variants and predicts 

their effects on genes 
[18] 

ANNOVAR Generate gene-based annotation [19] 

IGV 

Visualization tool to simultaneously 

integrate and anlyze multiple types of 

genomic data 

[20] 

GenomeStudio Normalize, cluster, and call genotypes [25] 

SVS 
Perform analyses and visualizations on 

genomic and phenotypic data 
[33] 

BEAGLE 
Genotype calling, phasing, and genotype 

imputation 
[39] 

Fimpute 
Haplotype estimation or phasing and 

genotype imputation 
[40] 

Impute2 Genotype imputation and haplotype phasing [47] 

Minimac 
performs imputation with pre-phased 

haplotypes 
[48] 
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Population analysis 178 

Population analysis is invaluable for genomic studies in animal science because it enables 179 

researchers to assess the genetic structure, diversity, and evolutionary dynamics within and 180 

between populations. Accurately characterizing population structures is crucial for identifying 181 

subpopulations, measuring inbreeding levels, and understanding the genetic background of 182 

breeding populations, all of which are essential for maintaining genetic diversity and improving 183 

selection outcomes [35]. Tools such as PLINK, ADMIXTURE, and STRUCTURE are 184 

commonly employed to detect key characteristics for understanding the genetic landscape of 185 

animal populations, such as population stratification, admixture, and genetic differentiation [5, 186 

36]. For example, ADMIXTURE provides estimates of individual ancestry proportions. These 187 

estimates allow researchers to detect mixed genetic backgrounds that could influence trait 188 

analysis [36]. Quality control measures, such as filtering based on MAF, HWE, and genotyping 189 

call rates ensure the data used for population analysis is reliable [4,37]. MAF filtering helps 190 

exclude rare alleles that may introduce noise or result from genotyping errors [5]. Similarly, 191 

HWE filtering removes SNPs that deviate from expected frequencies due to selection or 192 

population substructures in order to prevent potential biases in the analysis [37]. Proper quality 193 

control improves the accuracy of population structure analyses and mitigates the risk of 194 

confounding in subsequent analyses such as GWAS and genomic selection [4]. By accurately 195 

characterizing population structures, researchers can identify unique genetic markers and 196 

enhance their understanding of trait inheritance, and then design breeding strategies that 197 

optimize genetic gain and preserve diversity to support sustainable livestock production [35, 198 

36]. 199 

 200 

GWAS 201 
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Genome-wide association studies (GWAS) are powerful tools for identifying genetic 202 

variants associated with complex traits in animal breeding such as growth traits, disease 203 

resistance, reproductive traits, and carcass traits [2, 4]. The reliability of GWAS findings hinges 204 

on rigorous quality control (QC) procedures that ensure high-quality data throughout the 205 

process. This begins with careful study design and population selection, where potential 206 

confounders like population stratification are addressed through methods such as Principal 207 

Component Analysis (PCA) and linear mixed models to correct for genetic structure within the 208 

population [38]. Phenotype data must be accurately collected and screened for outliers to 209 

minimize noise. Genotype data undergoes thorough QC, including filtering SNPs based on call 210 

rates, MAF, and deviations from HWE [4, 5]. For instance, SNPs with low call rates are 211 

excluded to avoid unreliable data that could lead to false-positive associations, while MAF 212 

filtering focuses the analysis on common variants that are more likely to have sufficient 213 

statistical power to detect true associations. HWE filtering is employed to remove SNPs that 214 

significantly deviate from expected allele frequencies because such deviations may indicate 215 

genotyping errors or underlying selection pressures [5]. To reduce redundancy and 216 

computational burden, linkage disequilibrium (LD) pruning is performed and missing 217 

genotypes are often imputed via reference panels using Fimpute or BEAGLE [39, 40]. Tools 218 

like PLINK and GEMMA are widely used to implement QC measures and conduct association 219 

tests because they offer a robust framework for analyzing large genomic datasets [4]. Statistical 220 

analysis in GWAS is carried out using models appropriate for the trait under study, and 221 

corrections for multiple testing to mitigate the risk of false positives and meta-analysis may be 222 

employed when integrating results from multiple studies [41]. To ensure the robustness and 223 

high accuracy of the GWAS models, a 5-fold cross-validation is often used. In this method, the 224 

datasets are divided into five subsets. The model is iteratively trained on four subsets and tested 225 
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on the remaining one to help validate the model’s accuracy and mitigate overfitting [42]. The 226 

results from GWAS offer valuable genetic variants for traits which can be targeted in marker-227 

assisted selection and genomic selection programs. Genomic selection aims to ultimately 228 

improve the genetic merit of livestock populations [2].  229 

 230 

Genomic Selection 231 

Genomic selection (GS) allows for the selection of animals based on SNP markers [43]. 232 

With the introduction of genomic selection, animal breeding has dramatically advanced by 233 

overcoming the limitations of traditional selection methods like best linear unbiased prediction 234 

(BLUP) and marker-assisted selection [43, 44]. GS relies on dense SNP data to estimate 235 

genomic breeding values, which are used to predict an individual’s genetic potential for 236 

economically important traits [2]. The accuracy of genomic selection models is dependent upon 237 

the quality of the genomic data and the reliability of GS models can be enhance significantly 238 

by the inclusion of imputation methods to handle missing or low-density SNP data [45]. 239 

Imputation is beneficial in low-density platforms because it allows for the cost-effective use of 240 

genotyping while still leveraging the power of high-density SNP information. Imputation 241 

increases the accuracy of genomic predictions by inferring missing genotypes in order to 242 

improve the reliability of estimated breeding values even with fewer markers [46]. Several 243 

imputation tools, including FImpute [40], Beagle [39], Impute2 [47], and Minimac [48] are 244 

widely used in animal breeding to enhance the accuracy of genomic selection models. 245 

Therefore, strict quality control is essential [49]. Quality control methods, such as filtering 246 

SNPs based on call rates, MAF, and HWE, is critical to ensuring that the data is vigorous and 247 

reliable. High call rates are important because missing data can introduce bias and reduce the 248 

reliability of genomic estimated breeding values. Similarly, excluding SNPs with low MAF 249 
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helps to avoid the noise associated with rare variants that may have little impact on prediction 250 

accuracy. Ensuring that SNPs conform to HWE expectations also prevents the inclusion of 251 

markers affected by selection, mutation, or other factors that could bias the genomic selection 252 

models [4, 5]. Advanced computational tools, such as GBLUP (Genomic Best Linear Unbiased 253 

Prediction) and ssBLUP (single-step BLUP), and Bayesian methods (BayesA, BayesB, BayesC) 254 

integrate SNP effects across the genome to enhance the precision of breeding value predictions 255 

[50, 51]. By using high-quality genomic data, genomic selection enables breeders to make more 256 

accurate decisions that lead to faster genetic gains and the improvement of traits such as milk 257 

yield, growth rate, and carcass weight in livestock. This approach not only enhances the 258 

efficiency of breeding programs but also contributes to the long-term sustainability and 259 

productivity of animal populations [35]. 260 

 261 

Figure 1. Overall flowchart from data preparation to Application in animal breeding 262 

 263 

Conclusion 264 
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High-throughput genotyping and sequencing has significantly advanced the field of 265 

animal breeding by enabling precise selection for desirable traits. However, the success of 266 

genomic selection hinges on the accuracy and quality of the genomic data used. Rigorous 267 

quality control (QC) measures are essential to ensure data integrity. These measures include 268 

SNP quality management, call rate assessment, and filtering based on minor allele frequency 269 

(MAF) and Hardy-Weinberg equilibrium (HWE). These QC processes are crucial for genomic 270 

selection, genome-wide association studies (GWAS), and population genetics analyses. 271 

Implementing stringent QC strategies enhances the reliability of genomic predictions, which 272 

improves breeding programs and genetic gains. By maintaining high standards of data quality, 273 

researchers and breeders can make informed decisions that lead to sustainable and productive 274 

advancements in animal breeding. 275 

 276 

  277 
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