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Abstract 8 

In swine breeding programs, it has now become critically important to emphasize selection for resilience to 9 

external environmental stress factors that have negatively impacted the productivity of pigs, such as those due to 10 

climate change induced temperature increases, or the intensification of housing environments. Secretion of 11 

cortisol, a neurophysiological change mediated by the hypothalamic-pituitary-adrenal axis, is a central mechanism 12 

in the biological stress response. This hormone is closely related to pig robustness and health and can serve as an 13 

informative indicator of stress resistance and robustness in pigs. To identify positional candidate genes and their 14 

genetic variants influencing blood cortisol levels, we conducted genome-wide association study (GWAS), joint 15 

linkage and linkage disequilibrium (LALD) mapping and Bayesian fine-mapping analysis in an F2 resource 16 

population generated by crossing Duroc pigs with Korean native pigs. The data used in the study included 243 F2 17 

animals. We utilized imputed whole-genome sequencing data for our analyses. GWAS results revealed a genome-18 

wide significant quantitative trait locus (q-value < 0.05) located within a ~2.46 Mb region between SNPs 19 

7:114031215 and 7:116497417 on pig chromosome 7, which accounted for 12.65% of the phenotypic variation. 20 

LALD mapping analysis was performed to narrow down the confidence interval (CI) of the quantitative trait locus 21 

which resulted in a CI of 2.39 Mb (7:114409266~116803751). Further, to identify candidate causal genes within 22 

the 2.39 Mb region, fine-mapping analysis was performed within the region. The fine-mapping analysis identified 23 

SERPINA1, ITPK1, CLMN, SERPINA12, and PRIMA1, in addition to SERPINA6, which was previously shown 24 

to be associated with blood cortisol levels. Our results identified positional candidate genes and genetic variants 25 

associated with serum cortisol concentrations that can be included in marker panels for genomic prediction to 26 

improve selection for robustness in pigs 27 

 28 

Keywords: Fine-mapping, candidate gene, serum cortisol levels, imputed whole-genome sequence, pig  29 
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With the rapid technological advancement and adoption of next-generation sequencing, genotype imputation and 37 

Bayesian statistical fine-mapping approaches, it has become feasible to conduct post genome-wide association 38 

fine-mapping analysis of quantitative trait loci (QTLs), to identify some of the genetic variants causatively 39 

associated with complex quantitative traits, such as blood cortisol levels. The GWAS and fine-mapping 40 

complement each other in genetic research. While GWAS is an excellent approach to identify broad genomic 41 

regions associated with complex economic traits using a sparse density of DNA markers and conventional p-42 

values to declare statistically significant associations, fine-mapping narrows these regions to specific potential 43 

causal variants. Fine-mapping employs sophisticated statistical methods that account for LD structure, utilizes 44 

denser genotyping of DNA markers, and can compute the posterior probability of causality for each variant in the 45 

genomic regions of interest. As an essential post-GWAS analysis, fine-mapping identifies putative causal variants, 46 

provides biological insights, facilitates functional studies, and improves effect estimation. By offering higher 47 

resolution and more precise identification of causal variants, fine-mapping translates GWAS discoveries into 48 

biological insights. [1-3]. 49 

Although genome-wide association studies (GWAS) were originally developed for population studies, 50 

family-based association studies, including outbred crosses, such as F2 intercrosses, have also become popular 51 

due to the implementation of mixed linear models in GWAS [4-6]. Genetic selection for robustness- and health-52 

related traits is becoming an important component of swine breeding operations because the current pig production 53 

system must cope with environmental stress factors derived from the intensification of housing environments and 54 

temperature increase due to climate changes [7]. Alterations in robustness and health can cause neuro-55 

physiological changes, including changes in blood cortisol levels. Cortisol secretion is mainly affected by the 56 

hypothalamic-pituitary-adrenal (HPA) axis, which are the key organs of biological stress response [8,9]. 57 

Hypothalamic corticotropin-releasing hormone stimulates the release of adrenocorticotropic hormone (ACTH) 58 

from the pituitary gland, which in turn triggers cortisol production in the adrenal cortex. The sensitivity of the 59 

adrenal glands to ACTH is crucial for the regulation of cortisol secretion. Cortisol bioavailability is critically 60 

modulated by corticosteroid-binding globulin (CBG). Through its high specific affinity for cortisol, CBG plays a 61 

vital role in regulating serum cortisol levels and their access to target cells. The majority of cortisol in the 62 

bloodstream is transported bound to CBG, while only a small fraction of the total serum cortisol remains unbound 63 

and biologically active [10,11]. 64 

Cortisol, a crucial hormone for facilitating adaptive stress responses, ensures the body's energy supply 65 

in dynamic environmental conditions. This hormone influences multiple physiological processes, including 66 

appetite regulation, glucose metabolism, and fatty acid metabolism. Additionally, cortisol suppresses 67 

inflammation, modulates immune function, and mobilizes energy resources. It also affects energy storage. 68 
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However, to be beneficial, cortisol levels must be maintained within an optimal concentration range [12]. In pigs, 69 

cortisol levels correlate with various economically important traits. Higher cortisol is associated with reduced 70 

growth and feed efficiency, and influences body weight, carcass characteristics, immune function, leanness, and 71 

meat quality [13,14]. The association between cortisol levels and various economically important traits has been 72 

well documented across species. For instance, studies in chickens and sheep have linked cortisol release to growth-73 

related traits [15,16].  74 

The secretion of cortisol regulated by the HPA axis is individually variable to stress responsiveness and 75 

is influenced by genetic determinants − heritability estimates of cortisol levels range between medium to high 76 

which makes it amenable to selection in breeding programs [17,18]. Hence, it is important to identify the genetic 77 

factors underlying blood cortisol levels and develop DNA markers to improve of the robustness and health of pigs, 78 

which are tightly linked to their welfare and productivity. Despite the importance of cortisol, only a limited number 79 

of GWAS and RNA seq analysis have been conducted to identify candidate genes that affect blood cortisol levels 80 

[19]. For example, previous GWA studies have identified SERPINA6 and SERPINA1 genes, which encode 81 

corticosteroid-binding globulin, implicated in the regulation of blood cortisol levels in humans and pigs [20-22]; 82 

Crawford et al. reported strong evidence that genetic variants in the SERPINA6/SERPINA1 locus primarily affect 83 

SERPINA6 gene expression in the liver, which likely influences cortisol levels and its delivery to other tissues 84 

[21]. In goats, an RNA-seq experiment aimed at identifying genes and pathways associated with increased cortisol 85 

levels due to transportation stress revealed significant enrichment of genes involved in inflammation and apoptosis 86 

pathways [23]. 87 

Here, we present the results of GWAS and post-GWAS fine-mapping analyses in which we aimed to 88 

identify positional candidate genes and genetic variants affecting serum cortisol concentrations that are involved 89 

in the mechanisms of stress response in pigs. Our findings could provide insights into stress response mechanisms 90 

and targets for improving pig welfare and productivity through genomic information enabled accurate genetic 91 

evaluation. 92 

 93 

Materials and Methods 94 

Animals and phenotype measurement 95 

We generated an F2 resource population by crossing Duroc and Korean Native Pig (KNP) pigs from Jeju Island 96 

[24-13]. There are two types of indigenous pigs in Korea: those living on the main peninsula of Korea and those 97 

living on Jeju Island. The Jeju Island indigenous pigs are particularly interesting as they have unique genetic 98 

properties that are very distinct from those of pigs raised on the Korean Peninsula since they have been largely 99 

isolated on Jeju Island for more than 1,000 years [25,26]. Hereafter, the Jeju native pig will be referred to as KNP. 100 

ACCEPTED



 6 

The coat color of KNP is black, and similarly to most indigenous breeds, their growth performance is stunted in 101 

comparison to modern commercial pig breeds. They possess however excellent meat quality attributes, such as a 102 

solid fat structure, a darker red meat color, and high levels of marbling [27-29]. In this study, nine purebred Duroc 103 

pigs were mated with five purebred KNP pigs to produce 36 F1 animals. Subsequently, the F1 animals were 104 

intercrossed to produce 345 F2 animals. From the F2 progeny comprised 31 full-sib families, high-quality serum 105 

cortisol level data from 243 F2 animals (133 males and 110 females) were obtained as phenotypic data, and the 106 

corresponding genotypic data were included for this study. All animals were raised at the experimental farm of 107 

the National Institute of Animal Science, Rural Development Administration, Jeju, Republic of Korea. They were 108 

fed ad libitum, and the males were not castrated. All experimental procedures were performed in accordance with 109 

national and institutional guidelines and were approved by the Ethical Committee of the National Institute of 110 

Animal Science (No. 2020-446).  111 

Blood samples (10 ml) were collected at 140 days of age from the jugular veins of the 243 F2 offspring. 112 

This specific age was chosen based on the ease of blood collection, taking into account the body size of pigs at 113 

this stage of development. The 140 days of age provided a balance between the pigs being sufficiently mature for 114 

straightforward blood sampling and not being too large to handle safely and efficiently. To minimize sampling 115 

variance, the blood sampling was conducted in the morning as soon as the research farm staffs were present at the 116 

farm. Serum cortisol levels were measured using a commercially available enzyme-linked immunosorbent assay 117 

kit (Endocrine Technologies, USA). Descriptive statistics are presented in Table 1. The cortisol phenotype showed 118 

significant deviation from normality and was transformed using a natural logarithm to remove skewness.  119 

 120 

SNP marker data 121 

Genomic DNA was isolated from the blood samples using a standard sucrose-proteinase K method. Genotyping 122 

was conducted using the Porcine SNP 60K BeadChip technology (Illumina, USA), which contained 61,565 SNPs 123 

across the whole genome. The SNPs were filtered for a minor allele frequency < 1%, genotype call rate < 95%, 124 

and P-value of 2-test for Hardy–Weinberg equilibrium  0.000001. Additionally, Mendelian inconsistencies in 125 

the F2 pedigree were assessed using the SNP marker information. The quality control procedures were performed 126 

using the PLINK v 1.90 [30]. In total, 39,463 SNP markers were retained and used for further analysis.  127 

 128 

Whole genome sequencing and genotype imputation 129 

To scale up the information obtained from the Porcine SNP 60K BeadChip data of the study population to whole-130 

genome sequence (WGS) level, genotype imputation was performed. As a reference panel for imputation, we 131 

collected whole-genome sequence data from 56 pigs, including 7 Duroc, 19 KNP, and 30 Duroc  KNP F2 (DK 132 
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F2) individuals. Among them, some of the Duroc (7) and KNP (5) pigs were the parental animals of the F2 resource 133 

population. The 30 DK F2 pigs were sampled from the F2 progeny of the resource population. Whole-genome 134 

sequencing was performed using the Illumina HiSeq platform (Illumina, USA). DNA libraries were prepared 135 

according to the manufacturer's instructions and sequenced using the paired-end 150 bp sequencing protocol. The 136 

sequencing coverage for these individuals was approximately 30. In addition, whole-genome resequencing data 137 

from 14 Korean Native pigs were obtained from the NCBI Sequence Read Archive (SRA). These sequencing data 138 

were accessed under the BioProject accession number PRJNA254936. These data were also included in the 139 

subsequent procedures for preparing the reference sequence dataset for genotype imputation. 140 

The raw sequencing data were processed and analyzed using a standard bioinformatics pipeline. Briefly, the 141 

quality of raw sequencing reads was assessed using FastQC 142 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc). The cleaned reads were then mapped to the Sus 143 

scrofa reference genome (Sscrofa11.1) using Burrows-Wheeler Aligner (BWA) with default parameters [31]. 144 

Duplicate reads were marked and removed using Picard MarkDuplicates (http://broadinstitute.github.io/picard). 145 

Variant calling was performed using Genome Analysis Toolkit (GATK), following the best practices for variant 146 

discovery [32]. The resulting variants were filtered based on quality scores, depth of coverage, and other standard 147 

parameters using GATK VariantFiltration to retain high-confidence genetic variants, ultimately leading to the 148 

acquisition of a total of 23,308,271 DNA markers. 149 

Because of the substantial difference in genome coverage between the 60 K SNP data and WGS data, a two-150 

step imputation strategy was employed to obtain WGS markers from the 60K SNP data. Initially, a subset of SNPs 151 

was extracted at regular intervals (window size of approximately 28 variants) from the WGS data obtained from 152 

the reference samples, resulting in 824,938 genetic variants. Subsequently, 1-step imputation was performed for 153 

the test sample, consisting of nine Duroc, five KNP, and 243 DK F2 pigs. This 1-step imputation yielded a total 154 

of 578,493 DNA markers. Using these marker data from the test sample, a 2-step imputation was conducted to 155 

obtain the WGS data, resulting in a total of 15,542,014 genetic variants. Haplotyping at the whole-genome level 156 

for both the reference and test samples was performed using Beagle version 2.4.1 [33]. Beagle was strictly used 157 

for haplotype construction. Genotype imputation was then performed using Minimac4 based on chromosome-158 

wise constructed haplotype information (https://github.com/statgen/Minimac4). An imputation accuracy was 159 

evaluated using the correlation coefficient (r2), with a filtering criterion set at an r2 value of 0.6 or higher. The 160 

imputed genetic variants were further filtered for a minor allele frequency < 1% and P-value of 2-test for Hardy–161 

Weinberg equilibrium  0.000001. In total, 13,720,525 DNA markers were retained and used for further analyses. 162 

 163 
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Estimation of heritability and GWAS of serum cortisol levels 164 

The EMMA (efficient mixed-model association) option of the rMVP package was used to estimate the heritability 165 

of the serum cortisol levels recorded in this study [34], and the following linear mixed model was used for the 166 

analysis: 167 

y = Xb + Zu + e (1) 168 

where y is the vector of the log transformed serum cortisol levels; b is the vector of fixed effects, including the 169 

intercept, the effect of sex, the effect of slaughtering batch (with nine levels), and body weight at 140 days of age; 170 

u is the vector of random additive effects following a normal distribution u~N(0, Ga
2), in which G is the genomic 171 

relationship matrix constructed using 13,720,525 DNA markers and σa
2 is the additive genetic variance; e is the 172 

vector of random residual effects following a normal distribution e~N(0, Ie
2), in which I is the identity matrix 173 

and σe
2 is the residual variance; X and Z are the incidence matrices for b and u, respectively. 174 

A GWAS adjusted for the familial relatedness within the F2 intercross was performed using the MLM 175 

(mixed linear model) option of the rMVP program [34]. The following linear mixed linear model was used to 176 

assess the association between SNP markers and the serum cortisol levels:  177 

y = Xb + Z1a + Z2u + e   (2) 178 

where, y is the vector of the serum cortisol levels; b is the vector of fixed effects including sex, the effect of 179 

slaughtering batch (with nine levels), and body weight at 140 days of age; a is the SNP marker effects; u is the 180 

vector of random additive effects with a distribution u ~N(0, Ga
2), where G is the genomic relationship matrix 181 

that was constructed using the 39,463 SNP markers; a
2 is the additive genetic variance; e is a vector of random 182 

residuals following a distribution e ~N(0, Ie
2), in which I is the identity matrix and e

2 is the residual variance. 183 

Z1 is the incidence vector for a. X and Z2 are the incidence matrices for b and u. The percentage of phenotypic 184 

variance explained by a marker (%VarSNP) was computed as follows [35]: 185 

 186 

where p is the minor-allele frequency of the SNP marker; α is the additive genetic effect of the DNA marker; p
2 187 

is the phenotypic variance for each meat quality-related trait. The p, α and p
2 were estimated using the rMVP 188 

program. The q-value adjusted genome-wide suggestive (q-value < 0.10) and significant (q-value < 0.05) 189 

thresholds were used to address the multiple testing issues [36].  190 

 191 

Joint linkage and linkage disequilibrium (LALD) mapping analysis 192 
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Initial fine-mapping of QTL identified by the GWAS was performed by exploiting LALD using a haplotype-193 

based approach: 1) We used CRI-MAP version 2.503, developed by Evans and Maddox (URL: 194 

http://www.animalgenome.org/bioinfo/tools/share/crimap), to establish a genetic linkage map of SSC7 using 899 195 

SNP markers. These makers were selected from the Porcine SNP 60K BeadChip genotype data. 2) The founder 196 

haplotypes were then reconstructed using the DualPHASE program [37] which combines LALD information 197 

through a Hidden Markov Model setting. 3) The haplotypes then were incorporated into the following linear 198 

mixed-effect model including fixed effects (sex, slaughtering batch, and body weight at 140 days of age), random 199 

effects (i.e., the effects of the founder haplotypes and the additive polygenic effect), and random residual terms to 200 

perform high-resolution QTL mapping using QxPAK version 5.05 [38]. A 1.0-LOD drop support interval was 201 

employed to estimate the confidence interval at the location of QTL location [39]. 202 

 203 

Further Bayesian fine-mapping analyses for identifying candidate causal gene(s) for serum cortisol levels 204 

To refine the critical region identified by the LALD analyses, a further fine-mapping approach based on the 205 

FINEMAP program was conducted [40]. The FINEMAP program uses a shotgun stochastic search algorithm that 206 

incorporates summary statistics (i.e., Z-score) from GWAS and the LD correlation structure calculated from the 207 

SNP markers in the region of interest to calculate the posterior probability of each SNP marker being a candidate 208 

causal variant. A threshold of 5% for the posterior probability was applied to select markers associated with 209 

candidate causal variants from the FINEMAP analyses [41]. A regional association plot with LD information was 210 

drawn using IntAssoPlot (https://github.com/whweve/IntAssoPlot). 211 

 212 

Positional candidate gene analyses 213 

A list of genes annotated within the QTL region was extracted from the NCBI database release 85 based on Sus 214 

scrofa 11.1 assembly (NCBI accession ID: NC_010454.4). A list of genes in each QTL region was obtained from 215 

the NCBI database. A comparative analysis with previously reported QTL locations for the trait was conducted 216 

using the Animal QTLdb [19]. The candidate causal variants identified using the FINEMAP program were 217 

annotated using the ENSEMBL pig genome database (https://asia.ensembl.org/).  218 

 219 

Results and Discussion 220 

Descriptive summary statistics and estimated heritability of the serum cortisol trait in the DK F2 pigs are presented 221 

in Table 1. The mean value and range of serum cortisol levels were 21.18 ng/mL and 61.6 ng/mL (2.30~63.90 222 

ng/mL) in the F2 population. The estimate of heritability for the cortisol traits was 0.32, indicating that a 223 

considerable contribution of genetic effects to the phenotypic variation in the trait of interests is considerable. A 224 
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total of 23,129,957 genetic variants were imputed using Beagle and Minimac4. The average imputation accuracy 225 

(r²) for the entire set of genetic variants was 0.67. A total of 7,587,919 variants had an imputation accuracy below 226 

the threshold of 0.6 (r²). After filtering out these low-accuracy variants, the final average imputation accuracy (r²) 227 

increased to 0.968 (Table 2). After an additional QC filtering step with PLINK for MAF and Hardy-Weinberg 228 

equilibrium deviations, a total of 13,720,525 DNA markers remained for subsequent analyses. 229 

 230 

GWAS  231 

To investigate the genetic structure underlying the cortisol trait in pigs, we used an F2 intercross between the 232 

Duroc and KNP pigs. Using this F2 intercross population, we detected a single genome-wide significant QTL (q-233 

value<0.05), comprising 34 DNA markers with extremely tight linkage disequilibrium among these markers. The 234 

QTL spans a ~2.46 Mb region between 7:114031215 and rs326739326 (7:116497417), for serum cortisol levels 235 

on SSC7 (Figure 1). However, a single most significant DNA marker associated with the phenotype of interest 236 

was not detected (Table 3). This significant QTL accounted for 12.65% of the phenotypic variance of the serum 237 

cortisol levels in the pig population (Table 3). 238 

 239 
LALD mapping analysis 240 

We performed integrated LALD mapping to reduce the confidence interval (CI) of the QTL using the 899 markers 241 

(from the Porcine SNP 60K BeadChip genotype data) located across the SSC7. The 1-LOD drop method was used 242 

to estimate the CI of the QTL in SSC7 (Figure 2A). The CI was reduced to 2.39 Mb (7:114,409,266~116,803,751). 243 

This region overlaps with a previously reported QTL region that influences pig blood cortisol levels [42-46]. The 244 

2.39 Mb region in SSC7 encompassed 24 annotated genes with 14,337 DNA markers in the Sus scrofa 11.1 245 

genome and imputed genotype dataset (Figure 2B, 2C).  246 

 247 

Further Bayesian fine-mapping for identifying novel positional candidate gene(s) for serum cortisol levels 248 

To further refine the critical region harbouring causative genes, we conducted fine-mapping of the 2.39 Mb region 249 

identified by the LALD analysis using the FINEMAP program. To enhance the fine-mapping accuracy for 250 

identifying putative causal genes, we first selected DNA markers located within the 24 positional candidate genes 251 

in the critical region based on the GWAS results. For each positional candidate gene, we retained only the DNA 252 

marker with the lowest p-value. Subsequently, we manually chose 297 DNA markers evenly distributed across 253 

the 2.39 Mb region. We then pruned these DNA markers using the linkage disequilibrium (LD) pruning option in 254 

the PLINK program, resulting in 17 DNA markers evenly distributed throughout the 2.39 Mb critical region. 255 

Hence, a total of 41 DNA markers were included in the Bayesian fine-mapping analysis. No single DNA marker 256 
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showed a substantial posterior probability (greater than 0.5) in the critical region (Table 4). DNA markers 257 

demonstrated low to medium levels of posterior probability, ranging from 0.066 to 0.116. This was most likely 258 

due to the modest sample size (N=243) of the F2 cohort. Nevertheless, our Bayesian fine-mapping approach 259 

allowed us to prioritize potential causal genes. While we acknowledge the limitations of our study, including the 260 

moderate sample size and the inability to pinpoint specific causal variants, the fine-mapping approach has enabled 261 

us to create a prioritized list of potential causal candidate genes. This list provides valuable direction for 262 

subsequent studies, demonstrating the usefulness of fine-mapping even in situations where definitive causal 263 

variant identification is not achieved. For example, the most significant QTL region, explained by 34 variants in 264 

Table 3, spans only 9,083 bp. This narrow region contains just two genes: SERPINA6 and SERPINA1. Based 265 

solely on the p-values obtained from the conventional GWAS, it would be challenging to determine which of 266 

these genes should be prioritized for further investigation. However, as shown in Table 4, the posterior 267 

probabilities derived from our fine-mapping analysis allow us to distinguish between SERPINA6 and SERPINA1, 268 

providing a basis for prioritization. Recently, Uemoto et al. reported results of GWAS and LALD analysis on 269 

Landrace pigs [22]. While our study shares similarities with their study, employing both GWAS and LALD 270 

approaches, major differences underscore the novelty of our work. We used whole-genome imputed sequence 271 

variants instead of a conventional 60K SNP chip, providing comprehensive genomic coverage including rare and 272 

novel variants. In addition, we applied Bayesian fine-mapping to prioritize potential causal candidate genes, rather 273 

than presenting a conventional list of positional candidates. This approach allowed for more precise localization 274 

and prioritization of potential causal genes and variants. 275 

In this critical region, SERPINA6, a gene encoding corticosteroid-binding globulin (CBG), has been 276 

proposed as a putative causal gene accounting for this QTL effect [34]. A p.Arg307Gly (c.919T>C) substitution 277 

in SERPINA6 was previously shown to increase CBG capacity and decrease CBG affinity for cortisol in vitro 278 

[47,48]. These findings suggest that SERPINA6 is a positional and functional candidate gene for the QTL 279 

associated with blood cortisol levels in pigs. However, the fine-mapping results based on posterior probability 280 

ranked the top five genes as SERPINA1, ITPK1, CLMN, SERPINA12, and PRIMA1 genes, all with higher posterior 281 

probability than SERPINA6 (Table 4). In this study, we could not evaluate the p.Arg307Gly (c.919T>C) 282 

substitution in SERPINA6 because the corresponding variant at position 7:115541678 was not present among the 283 

14,337 DNA markers initially considered for the fine-mapping.  284 

SERPINA1, which encodes alpha-1 antitrypsin, inhibits neutrophil elastase and regulates cortisol 285 

secretion by influencing CBG cleavage and subsequent reconfiguration of the reactive center loop [49]. 286 

Heterozygosity of SERPINA1 mutations leads to alpha-1 antitrypsin deficiency and CBG cleavage, thereby 287 

increasing the free cortisol fraction [50]. Intracellular inositol triphosphate (IP3) is involved in various signal 288 
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transduction pathways that affect cellular metabolisms [51]. Increased IP3 levels can trigger cortisol secretion by 289 

the adrenal zona fasciculate cells [52]. IP3 is produced by PIP2 hydrolysis, and ITPK1 synthesizes IP4, IP5, and 290 

IP6. Hence, ITPK1 polymorphisms could potentially affect inositol metabolism, which may be associated with 291 

cortisol secretion via the inositol pathways. CLMN, which encodes a calponin-like transmembrane domain protein, 292 

regulates cell cycle exit and neurite outgrowth in murine neuroblastoma cells. Genetic variants of CLMN may 293 

influence synaptic function and organization, resulting in the HPA axis [53,54]. SERPINA12, also known as 294 

VASPIN, is an adipokine belonging to the serpin protein family. Cortisol plays an important role in adipose tissue 295 

by influencing adipokine expression, insulin sensitivity, and fatty acid metabolism [55]. PRIMA1 encodes Proline-296 

Rich Membrane Anchor 1 protein, which is required for anchoring of acetylcholinesterase to neuronal synapses. 297 

Acetylcholin, a product of acetylcholinesterase, is released in response to stress, and activates the HPA axis, which 298 

is linked to cortisol production [56]. However, there is still a paucity of direct genetic evidence on the effects of 299 

CLMN and PRIMA1 on blood cortisol levels. 300 

 301 

CONCLUSION 302 

The intensification of housing environments and the impact of climate change on current production systems have 303 

negatively impacted the breeding and growth of pigs. The cortisol level is an important indicator of stress 304 

resistance and robustness in pigs. This hormone levels in pigs could indicate environmental stress, potentially 305 

intensified by climate change. Rising temperatures and erratic weather patterns increase heat stress, alter food and 306 

water availability, and expose livestock to new pathogens, elevating cortisol and affecting animal health and 307 

productivity. Studying cortisol levels in pig populations like the KNP and its crossbreeds can provide insights into 308 

their adaptation to changing environments [57]. To elucidate the molecular genetic basis of breeding robustness, 309 

we identified QTLs affecting basal serum cortisol levels using imputed whole-genome sequencing data-based 310 

GWAS, LALD analysis, and Bayesian fine-mapping approaches. This study identified novel positional candidate 311 

genes (SERPINA1, ITPK1, CLMN, SERPINA12, and PRIMA1) in addition to the previously known SERPINA6. 312 

Our results provide a basic understanding for the development of genetic markers to improve the robustness of 313 

pigs. 314 

 315 

Acknowledgments 316 

Not applicable 317 

 318 

  319 

ACCEPTED



 13 

References 320 

1. Slatko BE, Gardner AF, Ausubel FM. Overview of next‐generation sequencing technologies. Current 321 
Protocols in Molecular Biology. 2018;122:e59. https://doi.org/10.1002/cpmb.59. 322 

2. Li Y, Willer C, Sanna S, Abecasis G. Genotype imputation. Annual Review of Genomics and Human 323 
Genetics. 2009;10:387-406. https://doi.org/10.1146/annurev.genom.9.081307.164242. 324 

3. Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal variants by statistical 325 
fine-mapping. Nature Reviews Genetics. 2018;19:491-504. https://doi.org/10.1038/s41576-018-0016-z. 326 

4. Ledur MC, Navarro N, Pérez-Enciso M. Large-scale SNP genotyping in crosses between outbred lines: how 327 
useful is it? Heredity. 2010;105:173-182. https://doi.org/10.1038/hdy.2009.149. 328 

5. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. The 329 
American Journal of Human Genetics. 2011;88:76-82. https://doi.org/10.1016/j.ajhg.2010.11.011. 330 

6. Lee JB, Lim JH, Park HB. Genome-wide association studies to identify quantitative trait loci and positional 331 
candidate genes affecting meat quality-related traits in pigs. Journal of Animal Science and Technology. 332 
2023;65:1194. https://doi.org/10.5187/jast.2023.e70. 333 

7. Knap PW. Breeding robust pigs. Australian Journal of Experimental Agriculture. 2005;45:763-773. 334 
https://doi.org/10.1071/EA05041. 335 

8. Joseph JJ, Golden SH. Cortisol dysregulation: the bidirectional link between stress, depression, and type 2 336 
diabetes mellitus. Annals of the New York Academy of Sciences. 2017;1391:20-34. 337 
https://doi.org/10.1111/nyas.13217. 338 

9. Ataallahi M, Nejad JG, Park KH. Selection of appropriate biomatrices for studies of chronic stress in animals: 339 
A review. Journal of Animal Science and Technology. 2022; 64:621. 340 

1.  https://doi.org/10.5187/jast.2022.e38. 341 

10. Mormede P, Terenina E. Molecular genetics of the adrenocortical axis and breeding for robustness. Domestic 342 
Animal Endocrinology.2012;43:116-131. https://doi.org/10.1016/j.domaniend.2012.05.002. 343 

11. Verbeeten KC, Alexandra HA. The role of corticosteroid-binding globulin in the evaluation of adrenal 344 
insufficiency. Journal of Pediatric Endocrinology and Metabolism.2018;31:107-115.  345 

2. https://doi.org/10.1515/jpem-2017-0270. 346 

12. Moisan MP, Castanon N. Emerging role of corticosteroid-binding globulin in glucocorticoid-driven 347 
metabolic disorders. Frontiers in Endocrinology.2016;7:160. https://doi.org/10.3389/fendo.2016.00160. 348 

13. Foury A, Devillers T, Sanchez MP, Griffon H, Le Roy P, Mormede P. Stress hormones, carcass composition 349 
and meat quality in Large White× Duroc pigs. Meat Science.2005;69:703-707. 350 

ACCEPTED

https://doi.org/10.5187/jast.2022.e38
https://doi.org/10.1515/jpem-2017-0270


 14 

3. https://doi.org/10.1016/j.meatsci.2004.11.002. 351 

14. Li J, Kim IH. Effects of levan-type fructan supplementation on growth performance, digestibility, blood 352 
profile, fecal microbiota, and immune responses after lipopolysaccharide challenge in growing pigs. Journal 353 
of Animal Science.2013;91:5336-5343. https://doi.org/10.2527/jas.2013-6665 354 

15. Yang L, Wang X, He T, Xiong F, Chen X, Chen X, Jin S, Geng Z. Association of residual feed intake with 355 
growth performance, carcass traits, meat quality, and blood variables in native chickens. Journal of Animal 356 
Science.2020;98:skaa121. https://doi.org/10.1093/jas/skaa121. 357 

16. Hewagalamulage SD, Lee TK, Clarke IJ, Henry BA. Stress, cortisol, and obesity: a role for cortisol 358 
responsiveness in identifying individuals prone to obesity. Domestic Animal Endocrinology.2016;56 359 
Suppl:S112-S120. https://doi.org/10.1016/j.domaniend.2016.03.004. 360 

17. Bartels M, Van den Berg M, Sluyter F, Boomsma DI, de Geus EJ. Heritability of cortisol levels: review and 361 
simultaneous analysis of twin studies. Psychoneuroendocrinology. 2003;28:121-137.  362 

4. https://doi.org/10.1016/S0306-4530(02)00003-3. 363 

18. Larzul C, Terenina E, Foury A, Billon Y, Louveau I, Merlot E, et al. The cortisol response to ACTH in pigs, 364 
heritability and influence of corticosteroid-binding globulin. Animal. 2015;9:1929-1934. 365 
https://doi.org/10.1017/S1751731115001767. 366 

19. Hu Z, Park CA, Reecy JM. Bringing the animal QTLdb and CorrDB into the future: meeting new challenges 367 
and providing updated services. Nucleic Acids Research. 2022;50:D956-D961. 368 
https://doi.org/10.1093/nar/gkab1116. 369 

20. Bolton JL. Genome wide association identifies common variants at the SERPINA6/SERPINA1 locus 370 
influencing plasma cortisol and corticosteroid binding globulin. PLoS Genetics. 2014;10:e1004474.  371 

5. https://doi.org/10.1371/journal.pgen.1004474 372 

21. Crawford AA et al., Variation in the SERPINA6/SERPINA1 locus alters morning plasma cortisol, hepatic 373 
corticosteroid binding globulin expression, gene expression in peripheral tissues, and risk of cardiovascular 374 
disease. Journal of Human Genetics.2021;66:625-636.  375 

6. https://doi.org/10.1038/s10038-020-00895-6. 376 

22. Uemoto Y, Ichinoseki K, Matsumoto T, et al. Genome-wide association studies for production, respiratory 377 
disease, and immune-related traits in Landrace pigs. Scientific Reports. 2021; 11: 15823. 378 
https://doi.org/10.1038/s41598-021-95339-2. 379 

23. Naldurtiker A et al. Differential gene expression analysis using RNA-seq in the blood of goats exposed to 380 
transportation stress. Scientific Reports.2023;13:1984.  381 

7. https://doi.org/10.1038/s41598-023-29224-5. 382 

ACCEPTED

https://doi.org/10.1017/S1751731115001767


 15 

24. Cho I, Park H, Ahn JS, Han S, Lee J, Lim H, et al. A functional regulatory variant of MYH3 influences 383 
muscle fiber-type composition and intramuscular fat content in pigs. PLoS Genetics. 2019;15:e1008279. 384 
https://doi.org/10.1371/journal.pgen.1008279. 385 

25. Cho I, Han S, Fang M, Lee S, Ko M, Lee H, et al. The robust phylogeny of Korean wild boar (Sus scrofa 386 
coreanus) using partial D-loop sequence of mtDNA. Molecules and Cells. 2009;28:423-430. 387 
https://doi.org/10.1007/s10059-009-0139-3. 388 

26. Lee E, Jang JC, Oh SH. The current status of Korean native pig production. Journal of Animal Science and 389 
Technology. 2023;65:1169. https://doi.org/10.5187/jast.2023.e120. 390 

27. Kim DH, Seong PN, Cho SH, Kim JH, Lee JM, Jo C, et al. Fatty acid composition and meat quality traits of 391 
organically reared Korean native black pigs. Livestock Science. 2009;120:96-102. 392 
https://doi.org/10.1016/j.livsci.2008.05.004. 393 

28. Ko KB, Kim GD, Kang DG, Kim YH, Yang ID, Ryu YC. Comparison of pork quality and muscle fiber 394 
characteristics between Jeju Black Pig and Domesticated Pig Breeds. Journal of Animal Science and 395 
Technology. 2013;55:467-473. 396 

29. Kim GW, Kim HY. Physicochemical properties of M. longissimus dorsi of Korean native pigs. Journal of 397 
Animal Science and Technology. 2018;60:1-5. https://doi.org/10.1186/s40781-018-0163-y. 398 

30. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the 399 
challenge of larger and richer datasets. Gigascience. 2015;4:s13742-8. https://doi.org/10.1186/s13742-015-400 
0047-8. 401 

31. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics. 402 
2009;25:1754-1760. https://doi.org/10.1093/bioinformatics/btp324. 403 

32. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al. The Genome Analysis 404 
Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research. 405 
2010;20:1297-1303. https://doi.org/10.1101/gr.107524.110. 406 

33. Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for whole-407 
genome association studies by use of localized haplotype clustering. American Journal of Human Genetics. 408 
2007;81:1084-1097. https://doi.org/10.1086/521987. 409 

34. Yin L, Zhang H, Tang Z, Xu J, Yin D, Zhang Z, et al. rMVP: a memory-efficient, visualization-enhanced, 410 
and parallel-accelerated tool for genome-wide association study. Genomics, Proteomics and Bioinformatics. 411 
2021;19:619-628. https://doi.org/10.1016/j.gpb.2020.10.007. 412 

35. Falconer DS, Mackay TFC. Introduction to quantitative genetics. 4th ed. Essex: Longman;1996. 413 

36. Storey JD, Tibshirani R. Statistical significance for genome-wide studies. Proceedings of the National 414 
Academy of Sciences. 2003;100:9440-9445. https://doi.org/10.1073/pnas.1530509100. 415 

37. Druet T, Georges M. A hidden Markov model combining linkage and linkage disequilibrium information for 416 
haplotype reconstruction and quantitative trait locus fine mapping. Genetics. 2010;184:789-798. 417 
https://doi.org/10.1534/genetics.109.108431. 418 

ACCEPTED



 16 

38. Pérez-Enciso M, Misztal I. Qxpak. 5: old mixed model solutions for new genomics problems. BMC 419 
Bioinformatics. 2011;12:1-7. https://doi.org/10.1186/1471-2105-12-202. 420 

39. Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. 421 
Genetics. 1989;121:185-199. https://doi.org/10.1093/genetics/121.1.185. 422 

40. Benner C, Spencer CC, Havulinna AS, Salomaa V, Ripatti S, Pirinen M. FINEMAP: efficient variable 423 
selection using summary data from genome-wide association studies. Bioinformatics. 2016;32:1493-1501. 424 
https://doi.org/10.1093/bioinformatics/btw018. 425 

41. Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al. Fine-mapping type 2 diabetes 426 
loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nature 427 
Genetics. 2018;50:1505-1513. https://doi.org/10.1038/s41588-018-0241-6. 428 

42. Désautés C, Bidanel JP, Milan D, Iannuccelli N, Amigues Y, Bourgeois F, et al. Genetic linkage mapping of 429 
quantitative trait loci for behavioral and neuroendocrine stress response traits in pigs. Journal of Animal 430 
Science. 2002;80:2276-2285. https://doi.org/10.1093/ansci/80.9.2276. 431 

43. Okamura T, Onodera W, Tayama T, Kadowaki H, Kojima‐Shibata C, Suzuki E, et al. A genome‐wide scan 432 
for quantitative trait loci affecting respiratory disease and immune capacity in Landrace pigs. Animal 433 
Genetics. 2012;43:721-729. https://doi.org/10.1111/j.1365-2052.2012.02359.x. 434 

44. Murani E, Reyer H, Ponsuksili S, Fritschka S, Wimmers K. A substitution in the ligand binding domain of 435 
the porcine glucocorticoid receptor affects activity of the adrenal gland. 2012; 436 
https://doi.org/10.1371/journal.pone.0045518. 437 

45. Görres A, Ponsuksili S, Wimmers K, Muráni E. Analysis of non‐synonymous SNP s of the porcine SERPINA 438 
6 gene as potential causal variants for a QTL affecting plasma cortisol levels on SSC 7. Animal Genetics. 439 
2015;46:239-246. https://doi.org/10.1111/age.12276. 440 

46. Uemoto Y, Ichinoseki K, Matsumoto T, et al. Genome-wide association studies for production, respiratory 441 
disease, and immune-related traits in Landrace pigs. Scientific Reports. 2021; 11: 15823. 442 
https://doi.org/10.1038/s41598-021-95339-2. 443 

47. Guyonnet-Dupérat V, Geverink N, Plastow GS, Evans G, Ousova O, Croisetiere C, et al. Functional 444 
implication of an Arg307Gly substitution in corticosteroid-binding globulin, a candidate gene for a 445 
quantitative trait locus associated with cortisol variability and obesity in pig. Genetics. 2006;173:2143-2149. 446 
https://doi.org/10.1534/genetics.105.053983. 447 
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Tables and Figures 476 

Table 1. Basic statistics for the phenotypic data in the DK F2 pigs 477 

Phenotype Total N *N Mean StDev Min Max h2 

Cortisol (ng/mL) 243 234 9 21.18 12.46 2.30 63.90 0.32 

*Number of individuals with missing phenotypes; h2: heritability. 478 

 479 

 480 
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Table 2. Evaluation of the genotype imputation accuracy. 482 

Chromosome Total variants Mean r2 Pass Pass mean r2 

1 2,144,560 0.629 1,357,945 0.963 

2 1,478,956 0.653 974,485 0.962 

3 1,393,829 0.591 832,824 0.960 

4 1,366,608 0.701 967,277 0.971 

5 1,098,829 0.656 728,091 0.965 

6 1,566,762 0.652 1,033,019 0.965 

7 1,323,022 0.669 893,604 0.966 

8 1,515,476 0.719 1,100,848 0.970 

9 1,578,875 0.607 965,412 0.968 

10 1,004,923 0.725 735,704 0.971 

11 978,320 0.667 658,497 0.971 

12 755,615 0.636 484,594 0.968 

13 1,781,238 0.706 1,268,266 0.971 

14 1,358,977 0.674 922,556 0.968 

15 1,263,992 0.663 844,095 0.970 

16 1,034,235 0.712 743,793 0.969 

17 805,850 0.653 530,034 0.968 

18 679,890 0.731 500,994 0.969 

Total 23,129,957 0.669 15,542,038 0.968 

Total_variants: total number of imputed and genotyped variants per chromosome; Mean r2: average r² of all SNPs; Pass: 483 

number of variants with r² > 0.6; Pass mean r2: average r² of variants after filtering out genotypes with r² < 0.6 484 

 485 
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Table 3. Summary of the QTL affecting serum cortisol identified by the GWAS   487 

1SSC 2Nsnp 3Interval (Mb) Centered SNP Effect 4
SE 5%var p-value 6q-value 

7 34 
115575190-

115584273 
7:115580597 0.3216 0.0643 12.65 1.13E-06 0.0398 

1Sus scrofa chromosome, 2number of SNPs included in interval, 3range of Nsnp, 
4standard error, 5percentage of phenotypic variance explained by the 488 

centered SNPs, 6FDR-based q-value 489 
 490 
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Table 4. Positional candidate genes and posterior probabilities for significant variants in SSC7 Bayesian fine-492 

mapping approach 493 
1Marker Position Effect 2SE 3%var p-value 4q-value 5Gene 6Annotation 7P.P 

7:115583990 115583990 0.322 0.064 0.127 1.13E-06 0.040 SERPINA1 3 UTR variant 0.116 

7:114409265 114409265 -0.289 0.061 0.103 4.02E-06 0.047 ITPK1 intron variant 0.094 

7:116490750 116490750 -0.299 0.061 0.111 1.92E-06 0.040 CLMN intron variant 0.091 

7:115727874 115727874 0.307 0.064 0.115 3.07E-06 0.040 SERPINA12 intron variant 0.084 

7:115045439 115045439 -0.298 0.062 0.110 2.33E-06 0.040 PRIMA1 intron variant 0.083 

7:115802806 115802806 -0.302 0.061 0.113 1.55E-06 0.040 SERPINA5 intron variant 0.077 

7:115792190 115792190 -0.302 0.061 0.113 1.55E-06 0.040 SERPINA4 3 UTR variant 0.077 

7:115342222 115342222 0.300 0.064 0.110 4.49E-06 0.048 DDX24 intron variant 0.075 

7:115280790 115280790 0.300 0.064 0.110 4.49E-06 0.048 CCDC197 5 UTR variant 0.075 

7:115023328 115023328 -0.294 0.061 0.107 2.72E-06 0.040 UNC79 intron variant 0.074 

7:115667344 115667344 -0.298 0.061 0.110 1.82E-06 0.040 SERPINA11 intron variant 0.074 

7:115554168 115554168 -0.298 0.061 0.110 1.82E-06 0.040 SERPINA6 open chromatin 0.073 

7:115314601 115314601 -0.292 0.061 0.106 2.61E-06 0.040 OTUB2 intron variant 0.066 

1Marker ID, 2standard error, 3percentage of phenotypic variance explained by the marker, 4FDR based q-value, 5positional candidate gene, 494 
6ENSEMBL variant annotation, 7posterior probability of the marker to be causal. 495 

 496 
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 500 

 501 

Figure 1. Whole-genome imputed sequence association analysis for serum cortisol levels in the DK cross. The 502 

red horizontal line represents the genome-wide significant threshold (p=4.78E-06) A. Manhattan plot B. QQ 503 

plot (Genomic inflation factor=1.032)  504 

 505 
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 512 

Figure 2. Fine-mapping analysis of QTL for serum cortisol levels on SSC7. A. LALD analyses B. Positional 513 

candidate genes in the 1-LOD interval (2.39 Mb) region. C. IntAssoPlot for the 1-LOD interval (2.39 Mb) 514 

region. 515 
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