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Abstract 8 

Developmental patterns of the gut microbiota are important for improving chicken health and 9 

productivity. However, the influence of litter and litter microbes on cecal microbiota is still unclear. 10 

This study aimed to identify broiler cecal microbiota at different ages according to litter usage in cage 11 

(without litter) and conventional (with litter) conditions. The cecal contents of the broilers from each 12 

group were collected from 1–5 weeks. The development and function of the gut microbiota were 13 

evaluated using 16S rRNA gene sequencing. The final body weight of the chickens was higher in the 14 

cage group than that in the conventional group. In particularly, α-diversity was higher at 3 weeks than 15 

that at 1 week. The phyla Firmicutes predominated at 3 weeks. In contrast, the abundance of 16 

Bacteroidetes and fibrinolytic bacteria increased significantly at 1 and 2 weeks compared to that at 3 17 

and 5 weeks. Corynebacterium was the most abundant genus in the conventional group after 3 weeks. 18 

In conclusion, the cecal microbiota are influenced by environmental factors, such as cage, which 19 

improves the chicken gut environment.  20 

 21 
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Introduction 25 

In the poultry industry, the immune system and growth performance are governed by changes in the 26 

bedding conditions. Particularly, weight gain and gut health of poultry are critical to maintain a 27 

healthy population [1–3].  Age and environmental conditions also considerably affect microbial 28 

communities [4,5].  29 

The suitability of various materials such as the bedding for chickens has been studied previously[6–30 

8]. Growth performance, health, carcass quality, and welfare are directly affected by litter. Rice hulls 31 

can be considered a cost-effective litter source that can be used in place of traditional bedding in rice-32 

producing areas. The use of thick sawdust or rice straw did not significantly affect weight gain and 33 

carcass weight [9]. Conversely, broilers reared on rice hull had lower weight gain than other groups 34 

[10]. All microorganisms were significantly higher in the rice hull treatment, except total yeast. 35 

however, body weight gain and mortality did not show statistically significant differences between 36 

treatment groups [11]. 37 

The avian gut microbiome varies considerably from that of mammalian. Litter, as bedding material, 38 

alters the microbial composition and diversity in the cecum of chickens [12]. Moisture promotes the 39 

growth of pathogenic microbes and ammonia production, which adversely affect weight and feed 40 

conversion in poultry. Additionally, litter supply and the gut microbiome are related to poultry 41 

performance [13]. Bacteroides and Eubacteria are established within 2 weeks, and gut microbes take 42 

6–7 weeks for complete colonization in chickens [14]. The dominant phyla in the cecum of chickens 43 

throughout the life cycle are Firmicutes and Bacteroidetes [15–17]. In broiler chickens, gut 44 

microbiome colonization and function differ from 1–42 d [18-20].  45 

Changes in gut microbial function and microbial metabolites, such as those of the immune system 46 

(cytokines), are simultaneously observed, depending on the litter. However, some studies have found 47 

no significant differences in peripheral blood leukocyte counts between cage- and litter laying hens 48 

[21]. In general, animals raised in outdoor environments have stronger immune functions [21,22]. 49 

Immune functions among animals vary with litter broilers exhibiting higher levels of interleukin-1β 50 

(IL-1β) and interferon-γ mRNA than those in caged chickens [12, 23-25]. Free-range and semi-51 

stocked chickens demonstrate higher titers of Newcastle disease virus and infectious bronchitis virus 52 

in peripheral blood than those in confined chickens. 53 

A recent study on litter has revealed altered microbial composition and diversity in the cecum [26]. 54 

However, it is unclear whether litter and litter microbes can influence the cecal microbiota. This study 55 

aimed to determine whether litter affects broiler gut microbiota and growth characteristics.  56 

 57 

Materials and Methods 58 

Experimental design and animal care 59 

All animal experiments were approved and reviewed by the National Institute of Animal Science 60 

(NIAS) Animal Use and Care Committee (NIAS-2021-508). All broiler chickens were managed 61 
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according to the National Research Council specifications. One-day-old broiler chicks (Ross 308) 62 

were purchased from a commercial farm and divided into two groups. Each group was assigned to a 63 

floor pen (0.93 m × 2.14 m). The size of mesh is 2.54 cm by galvanized steel wire, and bedding 64 

materials is used rice hulls. The chickens were fed using a graded feeding program (Table 1) 65 

consisting of starters (0–7 days), growers (8–21 days), and finishers (22–35 days); water was provided 66 

ad libitum. Feed was supplied as small pellets for the start-up phase and as pellets for the growth and 67 

finishing phases. The animals were randomly assigned to one of the six replicate pens per treatment. 68 

The experimental groups were divided into cage and cage-free groups, according to litter usage. 69 

Room temperature was monitored daily. The light-dark cycle was set from 18 to 6 h during the 70 

experimental period. All bedding materials are sterilized and UV irradiated. Additionally, all 71 

experimental equipment was brought into the room after a sterilized or sterilized products were used. 72 

Body weight and feed intake were recorded weekly. The weight gain and feed conversion ratio (FCR) 73 

were then calculated. At 7, 14, 21, 28, and 35 days of age, chickens in the treatment groups were 74 

euthanized by anesthesia with carbon dioxide. Blood was collected from the carotid artery or wing 75 

vein. Cecal digesta were placed in liquid nitrogen and stored at -80 °C. 76 

 77 

Hematological and cytokine analysis 78 

Blood samples were collected from the carotid artery or wing vein using ethylenediaminetetraacetic 79 

acid tubes (BD Vacutainers). An automated hematology analyzer (Mindray BC-5300; Mindray Co., 80 

Ltd., Shenzhen, China) was used to assess hematological parameters, such as red blood cell (RBC) 81 

count, white blood cell (WBC) count, packed cell volume, hemoglobin (HGB), mean corpuscular 82 

volume (MCV), mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, 83 

erythrocyte sedimentation rate, total protein, and absolute counts of heterophils, lymphocytes, 84 

monocytes, eosinophils, and basophils, according to the manufacturer’s instructions. Concentration of 85 

pro-inflammatory cytokines, including IL-1β, interleukin 6 (IL-6), and tumor necrosis factor alpha 86 

(TNF-α), were measured using commercial chicken enzyme-linked immunosorbent assay kits (AFG 87 

Scientific, EK780087, EK780053, EK780062) according to the manufacturer’s instructions.  88 

 89 

DNA extraction and Microbial Community Analysis 90 

Metagenomic DNA was extracted from broiler cecal samples using the bead-beating (repeated 91 

bead-beating plus column) method [27] via a QIAamp DNA kit (Qiagen, Hilden, Germany).  92 

Artificial sequences and low-quality bases in the generated reads were removed using 93 

Trimmomatic and TruSeq3-PE. fa:2:30:10:2:True, LEADING:5, TRAILING:20, MINLEN:250 94 

parameters [28]. After raw data QC, the filtered reads were analyzed using QIIME2 [29]. The 95 

remaining adapter sequences in the filtered reads were removed using the cutadapt module in the 96 

QIIME2 with --p-front-f CCTACGGGNGGCWGCAG and-p-front-r GAC-97 

TACHVGGGTATCTAATCC parameters [30]. The denoising step was conducted using dada2, a 98 

denoise-paired module in QIIME2, with parameters–p-trunc-len-f 230 and–p-trunc-len-r 220 [31]. 99 
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Taxonomic assignment was conducted using the classify-sklearn module with a pretrained silva-138-100 

99-nb-classifer. qza as provided by QIIME2 [32]. After taxonomic assignment, taxa assigned to the 101 

mitochondria and chloroplasts and those whose assigned level did not represent the minimum phylum 102 

were filtered out.  103 

 104 

Statistical analyses 105 

The align-to-tree-mafft-fasttree module [33,34] was used for tree construction of the representative 106 

amplicon sequence variant (ASV), and alpha- and beta-diversity were calculated using the diversity 107 

module in QIIME2 [35]. For functional pathway prediction of the microbial community, PICRUST2 108 

was employed with a frequency table exported from QIIME2 [36]. Principal Component Analysis 109 

(PCA) plots and statistical tests for the predicted pathways were conducted using STAMP with the 110 

Kruskal–Wallis test [37]. Differential abundance taxon analyses were conducted using Linear 111 

discriminant analysis effect size (LEfSe) [38]. Significant differences in blood results and growth 112 

performance were determined at P < 0.05, using Prism ver. 9 software. 113 

 114 

Results 115 

Growth performances  116 

The effects of environmental bedding conditions on the growth performance of broiler chickens are 117 

shown in Table 2. Final body weight, weight gain, and feed conversion ratio were higher in chickens 118 

housed in cages (without litter) than those in conventional conditions (with litter) for 5 weeks (P < 119 

0.01). However, the average daily feed intake did not differ significantly between the conventional 120 

and cage groups. 121 

 122 

Blood analysis 123 

Blood hematological and cytokine analyses were performed for the different bedding 124 

environmental conditions (Figure 1). Under different conditions, the WBC counts were higher in the 125 

cage group than those in the conventional group (P < 0.001). The observed increase in white blood 126 

cells is proposed to represent a defensive mechanism against external disease or inflammation. 127 

However, the RBC count, HGB level, and MCV were not significantly different between the two 128 

groups. In addition, TNF-α, IL-1, and IL-6 levels were not differentially regulated between the 129 

conventional and cage groups. 130 

 131 

Alpha and beta diversity 132 

In the broiler cecum, changes in alpha diversity were confirmed over 5 weeks (Figure 2). The alpha 133 

diversity was significantly different from 1 to 2 wks. However, the diversities at weeks 3, 4, and 5 134 

were similar. In the bedding environment, the alpha diversity was not significantly different. Beta 135 

diversity clustered from 1 to 5 weeks, similar to the alpha diversity pattern. Beta diversity determined 136 

using the PCoA plot was independent of the presence or absence of litter. 137 
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 138 

Bacteria at the phylum level between the cage and conventional groups by aging 139 

The gut microbiota was dominated by Firmicutes, Proteobacteria, and Bacteroidetes at the phylum 140 

level at 1 and 2 weeks, especially, the Firmicutes account for greater than 98% (Figure 3). The gut 141 

microflora composition marginally varied between the two groups after one week. Ruminococcus was 142 

the predominant genus in majority of the samples. In addition, Lactobacillus and Bacillus 143 

corresponding to lactic acid bacteria, Escherichia-Shigella including Escherichia coli, and 144 

Erysipelatoclostridium and Clostridium were identified as the major genera at 1 week. The gut 145 

microflora at 2 weeks was not significantly different from that at the first week. Faecalibacterium was 146 

dominant at 3 weeks of age. At 4 and 5 weeks, the predominant genera were Faecalibacterium, 147 

Lactobacillus, and Clostridia, accounting for more than half of the total population (Figure 4). 148 

 149 

Microbial pathway analysis for different bedding conditions 150 

This study attempted to identify significant pathways in individual pathway units. P4-PWY 151 

(superpathway of L-lysine, L-threonine, and L-methionine biosynthesis I) and PWY0-781 (aspartate 152 

super-pathway) were upregulated in the control group with litter after 1 week (Figure 5). A total of 48 153 

pathways were affected by litter use, among which 32 pathways were upregulated and 16 were 154 

downregulated at 2 weeks (P < 0.05). At 3 weeks, 21 pathways showed significant differences with 155 

respect to litter use, among which 16 pathways were downregulated and five were upregulated in the 156 

conventional group (P < 0.05). The relative distribution of functional pathways within the intestinal 157 

microbial flora was determined to identify clustering patterns between groups using PCA at 3 and 4 158 

weeks. On supplying litter at 3, 4, and 5 weeks, the mycolyl-arabinogalactan-peptidoglycan complex 159 

biosynthesis pathway was upregulated in the conventional group (Table 3). LEfSe was used to 160 

identify differences depending on litter use. Four differentially abundance taxa at the genus level were 161 

discovered at week 1 using LEfSe (Figure 6). The abundance of Romboutsia and Turicibacter 162 

increased in the conventional-litter group whereas that of Lachonoclostridium increased in the cage 163 

group without litters. In the second week, no significant differences were observed between the cage 164 

and conventional cage groups. Relative abundance was not detected at the genus level at week 2 (data 165 

not shown). Eight differentially abundance taxa were detected at the genus level at 3 weeks, including 166 

five differentially abundance taxa with clear genera. Among these, the abundances of 167 

Corynebacterium and Hydrogenoanaerobacterium were increased in the litter use group, whereas 168 

those of Odoribacter, Anaerofustis, and Faecalibacterium were increased in the cage group. Eight 169 

differentially abundance taxa were detected at the genus level at 4 weeks. The increased abundances 170 

of Turicibacter at 1 week and Corynebacterium at 3 weeks further increased at 4 weeks. The 171 

abundances of Roseburia, Staphylococcus, Brachybacterium, and Brevibacterium also increased in 172 

the litter-treated groups, whereas that of Tyzzerella increased in the cage group. In the fifth week, the 173 

four differentially abundance taxa showed differences at the genus level, depending on the litter. The 174 

abundances of taxa Corynebacterium and Papillybacter increased with litter use. In particular, the 175 
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abundance of Corynebacter increased at both 3 and 4 weeks. In the absence of litter, an increase in the 176 

abundances of two differentially abundance taxa (Colidextribacter and Flavonifractor) were observed. 177 

Relative abundance at the genus level differed based on the type of bedding. The cage and 178 

conventional groups are indicated in red and green, respectively. The bacterial taxa were statistically 179 

significant (P < 0.05) in terms of relative abundance. 180 

 181 

Discussion 182 

 183 

Body weight gain in broiler chickens is influenced by various environmental conditions, including 184 

aging, nutrients, microbiome, immunity, and bedding materials [39,40]. In this study, growth 185 

performance generally showed a significant difference with or without litter (i.e., cage vs. 186 

conventional cage). In particular, although the FCR decreased in broilers in the cage at an early phase, 187 

it was ameliorated during the growing phase. Broiler weight gain from days 0–28 was not 188 

significantly different between the cage and conventional groups, similar to the findings of a previous 189 

study [41].  190 

The productivity and intestinal microbiota were influenced in caged chickens, thus promoting the 191 

growth of beneficial microbes and preventing harmful bacteria. Therefore, we investigated the effects 192 

of litter use on the gut microbiota of chicken in cages (without litter) and conventional conditions 193 

(with litter). The most abundant phyla in the broiler cecum was Firmicutes, which is consistent with 194 

previous findings [42,43]. Firmicutes, associated with chicken weight gain, produce compounds in the 195 

intestinal wall as an energy source. In this study, the abundance of Firmicutes increased marginally 196 

under litter conditions. The abundance of gut bacteria was relatively low in the litter-treated group, as 197 

reported in previous studies [44,45].  198 

Ruminococcus was significantly more abundant at all ages. The abundance of Bacteroides and 199 

Ruminococcus is associated with gut health [46]. The increased abundance of Lactobacilli may inhibit 200 

pathogens by producing vitamins and organic acids [47] Increasing the proportion of 201 

Faecalibacterium in the intestinal microflora positively affects growth [48]. Faecalibacterium 202 

produces short-chain fatty acids such as acetate, propionate, and butyrate, which are major products of 203 

intestinal microorganisms and commensal bacteria [49]. It also produces shikimic and salicylic acids, 204 

which are involved in its anti-inflammatory activities. Faecalibacterium spp. isolated from chickens 205 

with strong immunity may also serve as potential probiotics. Lysine, threonine, and methionine amino 206 

acids (AAs) are essential during the early chick phase [50]. The intestine-related inflammatory 207 

response can be attributed to β-galactomannan contained in soybeans of broiler fed. The increasing 208 

mannan degradation functions in the conventional group improved the abundance of gut microbiota in 209 

chickens, which changed with a decrease in intestine-related inflammatory reactions. Mannans are a 210 

type of hemicellulose found in a variety of cereals and industrial byproducts utilized in animal feed. 211 

While mannans can potentially be detrimental to animals, smaller portions of them offer benefits. The 212 

fermentation of mannan polysaccharides and oligosaccharides has been observed to alter the intestinal 213 
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microbiota. Therefore, the varying sizes and monosaccharides present in mannan polysaccharides may 214 

influence the intestinal microenvironment [51]. Mitigation can improve productivity and alleviate 215 

mortality.  The abundance of Faecalibacterium increased in the cage group compared to that in the 216 

conventional group. Therefore, it is expected to play an important role in the health of individual 217 

species at 3 weeks of age owing to increased immunity.  Increasing AAs in chickens housed without 218 

litter can enhance chicken health through intestinal microbial flora.  219 

Five microbes were detected at the genus level. The abundances of Corynebacterium and 220 

Hydrogenoanaerobacterium increased in the conventional group while those of Odoribacter, 221 

Anaerofustis, and Faecalibacterium were enhanced in the cage group at 3 weeks. Corynebacterium 222 

can cause diseases in various livestocks [52]. After the third week, the use of litter for 3 weeks 223 

induced Corynebacterium growth. Brachybacterium and Brevibacterium species at 4 weeks 224 

associated with growth performance are frequently found in the microbial flora of dust and feces [53]. 225 

Forty-eight pathways showed significant differences after two weeks. Among these, 32 pathways were 226 

upregulated in the conventional group with litter and 16 pathways were downregulated in the cage 227 

group without litter. The upregulation of biosynthesis-related pathways and downregulation of 228 

decomposition-related pathways were observed. 229 

In this study, the pathways identified based on the graphical analysis at weeks 3, 4, and 5 did not 230 

significantly affect the intestinal microbial flora during litter use. However, the three common 231 

pathways influencing the mycolyl-arabinogalactan-peptidoglycan complex biosynthesis increased at 232 

weeks 3, 4, and 5 compared to 1 and 2 wks. However, this pathway is unlikely to be directly related to 233 

the effect of litter, since it is specific to cell wall synthesis. Romboutsia was an uncharacterized 234 

bacterial genus. However, the fungal species in the gut microbiota of young hens showed differences 235 

when Astragalus was used as a feed additive [54]. Romboutsia is the major genus involved in 236 

functioning of the intestinal microbial flora of chicken [55]. In addition, Turicibacter is present at 237 

residual levels in the feed intake of chickens [56]. Feed intake and average weight gain of groups 238 

depended on litter use. The Lachnoclostridium strain can be used to regulate body weight and drip 239 

loss associated with meat quality and body weight in broilers [57]. This suggests that meat quality can 240 

be improved by regulating the intestinal microbiota. The genus Corynebacterium can cause diseases in 241 

various animals and its growth is positively reduced by lactic acid bacteria or feed additives [58]. 242 

Therefore, if the abundance of related species increases in the intestinal microbial flora, litter use may 243 

not be considered positive after the third week. In this study, the abundance of Odoribacter, a key 244 

bacterial species in feed additives consisting of phages, increased in the conventional groups without 245 

litter. Anaerofustis is related to energy metabolism and is positively correlated with the accumulation 246 

of abdominal fat in chickens [59]. Although this genus needs further evaluation, it is unlikely to 247 

positively affect growth rate. Faecalibacterium positively affects the growth of intestinal microflora 248 

[48]. In this study, Faecalibacterium was established as the dominant species in the cage group 249 

without litter from 3–5 weeks. During this period, the unuse of litter is preferable based on the 250 

existing known intestinal microorganisms.  251 
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Brachybacterium is mainly found in dust and fecal samples from poultry farms with poor breeding 252 

performance [60]. However, increase in the abundance of this species in litter has not been evaluated. 253 

In addition, Brevibacterium is also abundant on farms with poor performance [60]. Herein, 254 

considering these bacterial species markers to evaluate the use of litter in intestinal microorganism 255 

research may not yield good results. Papillibacter is a pathogenic bacterium with considerably 256 

reduced abundance in chickens when Lactobacillus casei is used as a feed additive. Increase in litter 257 

use did not positively affect intestinal microorganisms, even in the fifth week. Therefore, various 258 

evaluations may be necessary for related bedding, depending on the use of litter from the third week 259 

onwards.  260 

In summary, all the bacterial species that increased in abundance in the cage (without litter) group are 261 

known to be associated with generally beneficial functions, such as improving growth performance or 262 

regulating immune responses. However, in this study, the intestinal microbial flora composition was 263 

more remarkably affected by the growth period than that by bedding use. In particular, chicken 264 

intestinal microbial flora was established, and the major dominant species did not change after the 265 

third week.  In particular, the abundance of Cornynebacterium increased in the litter group from 3–5 266 

weeks. Increased bacterial abundance in the litter had a negative effect in this study. Hence, it is 267 

necessary to consider the benefits of using litter by analyzing the intestinal microbiota. In contrast, 268 

improvement in the FCR and relative abundance of beneficial gut microbiota was observed in cages 269 

(without litter) compared to those in conventional-supplied litter. Hence, it is recommended that the 270 

use of litter should be avoided after three weeks when intestinal microorganisms are established.  271 
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Table 1. Nutrient levels in the diets used during different growth periods 462 

Items Starter Grower Finisher 

Crude protein (%) 24.15 23.47 23.01 

Crude fat (%) 9.41 6.13 4.65 

NDF (%) 9.23 12.35 8.51 

ADF (%) 4.24 3.94 3.66 

Ash (%) 8.35 5.87 6.01 

NDF, Neutral detergent fiber; ADF, acid detergent fiber. 463 

464 
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Table 2. Growth performance of broiler chickens according to bedding conditions 465 

Items 
Conventional cage with 

litter (n =150) 
Cage without litter (n =150) P value 

IBW, g (1 wk) 38.17±0.23 38.27±0.22 0.7470 

FBW, g (5 wk) 2,329±17.34 2,444±38.66 0.0087 

ADFI, g 93.49±0.65 92.76±1.32 0.6111 

ADG, g 65.47±0.50 68.75±1.11 0.0088 

FCR, g/g 1.43±0.01 1.35±0.02 <0.001 

Values are mean ± standard error of the mean. IBW, initial body weight; FBW, final body weight. ADFI, average 466 
daily feed intake; ADG, average daily gain; FCR, feed conversion ratio. 467 
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Table 3. The influence of gut microbiota on signaling pathways, based on aging 469 

Pathway 3 wks 4 wks 5 wks 

Mono-trans, poly-cis decaprenyl phosphate biosynthesis (PWY-6383) Down Up Up 

Mycolyl-arabinogalactan-peptidoglycan complex biosynthesis (PWY-

6397) 
Up Up Up 

Mycothiol biosynthesis (PWY1G-0) Down Up Up 
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 473 
Figure 1. Hematological (A) and cytokine (B) analyses of broiler chickens according to bedding 474 

conditions. Data are shown as mean and standard error of the mean. n= 6. For statistical analysis, 475 

unpaired Stu-dent's T‐test was used to compare the means of two populations. WBC, white blood cell; 476 

RBC, red blood cell; HGB, hemoglobin; HCT, Hematocrit; MCV, mean corpuscular volume; MCH, 477 

mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; PLT, Platelet; 478 

RDW, red cell distribution width. *** P < 0.001 (highly significant). 479 
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Figure 2. Microbiota diversity indices of the gut microbiota between the five age groups and bedding 488 

condition. n = 6. (A) Alpha-diversity using the Chao 1 index. (B) Beta diversity principal coordinate 489 

analysis (PCA) plot using Bray Curtis dissimilarity measure in the five age groups. (C) Beta diver-sity 490 

PCA plot using Bray Curtis dissimilarity measure between cage and conventional groups. The P value 491 

was tested using a nonparametric Kruskal-Wallis test with a Bonferroni post hoc test. ** P < 0.01; 492 

***, P < 0.001.  493 
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 495 

 496 

Figure 3. The relative abundances of Firmicutes at the phylum level by aging between the cage 497 

(without litter) and conventional (with litter) groups. The percentages of Firmicutes were 87.39±5.72, 498 

99.31±0.31, 97.73±0.50, 98.70±0.45, and 96.44±0.67 % at 1,2,3,4 and 5 weeks, respectively, among 499 

chickens housed in cages without litter. The percentages of Firmicutes were 92.63±3.42, 97.47±0.94, 500 

98.53±0.29, 98.83±0.35, and 98.36±0.16 % at 1,2,3,4, and 5 weeks, respectively, among chickens 501 

housed in conventional conditions (with litter). n= 6. 502 
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 505 

 506 

Figure 4. The relative abundances of Lactobacillus at the genus level by aging between the cage 507 

(without litter) and conventional (with litter) groups. The percentages of Lactobacillus were 508 

11.34±3.70, 17.11±2.10, 15.38±3.20, 11.67±2.86, and 13.97±4.44 % at 1,2,3,4, and 5 weeks, 509 

respectively, among chickens housed in cages without litter. The percentages of Lactobacillus were 510 

11.26±4.76, 9.94±2.67, 19.23±3.65, 19.34±4.65, and 26.50±6.21 %, respectively, at 1,2,3,4, and 5 511 

weeks among chickens housed in conventional conditions (with litter). n = 6. 512 
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Figure 5. Microbial pathway abundance box plots between the cage and conventional groups. (A) P4-520 

PWY (superpathway of L-lysine, L-threonine, and L-methionine biosynthesis I) at 1 week. (B) 521 

PWY0-781 (spartate superpathway) at 1 week. 522 
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 530 

Figure 6. Graphical representation of Linear discriminant analysis (LDA) effect size (LEfSe) of cecal 531 
microbiota in broiler chickens among the cage and conventional groups. (A-D) show the LEfSe 532 
results at weeks 1, 3, 4, and 5, respectively. The horizontal bar represents the log10 transformed LDA 533 
score 534 
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