JAST (Journal of Animal Science and Technology) TITLE PAGE Upload this completed form to website with submission

ARTICLE INFORMATION	Fill in information in each box below
Article Type	Research article
Article Title (within 20 words without abbreviations)	Effects of space allowance during gestation and socialization training during growing period on the productivity and welfare of primiparous sows
Running Title (within 10 words)	Productivity and welfare of primiparous sows
Author	Yejin Min1#, Hyunjin Kyoung2#, Yohan Choi1, Doowan Kim1, Yongdae Jeong1, Youngmin Kim1, Soojin Sa1, Hyunju Park1, Chaehyun Kim1, Junseon Hong1, Junghwan Jeon3, Joeun Kim1*, Minho Song2* # These authors contributed equally to this work as the first author. * Corresponding authors
Affiliation	1 Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea 2 Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea 3 Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
ORCID (for more information, please visit https://orcid.org)	Yejin Min (https://orcid.org/0000-0002-3083-1513) Hyunjin Kyoung (https://orcid.org/0000-0001-5742-5374) Yohan Choi (https://orcid.org/0000-0003-4710-4731) Doowan Kim (https://orcid.org/0000-0003-2392-5535) Yongdae Jeong (https://orcid.org/0000-0002-1985-583X) Youngmin Kim (https://orcid.org/0000-0002-1985-583X) Youngmin Kim (https://orcid.org/0000-0002-2634-5109) Hyunju Park (https://orcid.org/0000-0001-5143-355X) Chaehyun Kim (https://orcid.org/0000-0003-2142-9888) Junghwan Jeon (https://orcid.org/0000-0003-2142-9888) Junghwan Jeon (https://orcid.org/0000-0002-1935-2132) Minho Song (https://orcid.org/0000-0002-4515-5212)
Competing interests	No potential conflict of interest relevant to this article was reported.
Funding sources State funding sources (grants, funding sources, equipment, and supplies). Include name and number of grant if available.	The research for this study was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01623002, RS-2021- RD010166)," Rural Development Administration, Republic of Korea.
Acknowledgements	Not applicable.
Availability of data and material	Upon reasonable request, the datasets of this study can be available from the corresponding author.
Authors' contributions Please specify the authors' role using this form.	Conceptualization: Min Y, Kyoung H, Kim J, Song M Data curation: Jeong Y, Hong J. Formal analysis: Choi Y. Investigation: Min Y, Kim D, Kim Y, Sa S, Park H, Kim C, Jeon J, Kim J. Writing - original draft: Min Y. Writing - review & editing: Min Y, Kyoung H, Choi Y, Kim D, Jeong Y, Kim Y, Sa S, Park H, Kim C, Hong J, Jeon J, Kim J, Song M

Ethics approval and consent to participate	The experimental protocols for this research were reviewed and
	approved by the Institutional Animal Care and Use Committee at the
	National Institute of Animal Science (NIAS-2021-527).

6

CORRESPONDING AUTHOR CONTACT INFORMATION

For the corresponding author (responsible for correspondence, proofreading, and reprints)						
First name, middle initial, last name	Joeun Kim Minho Song					
Email address – this is where your proofs will be sent	kjektw@korea.kr mhsong@cnu.ac.kr					
Secondary Email address						
Address	Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea					
Cell phone number						
Office phone number	+82 41 580 3454 +82 42 821 5776					
Fax number						

10 Abstract

11 South Korea recently revised its livestock regulations to enforce mandatory group housing for pregnant sows beyond 12 six gestation weeks until 2030. However, group housing of pregnant sows can influence their social hierarchy and 13 feed competition, thereby affecting their reproductive performance and welfare. Although governing regulations of 14 minimum space requirements for group-housed pregnant sows have not yet been established in South Korea, a 15 minimum space of 1.9 m² per sow is estimated to be necessary. Therefore, this study investigated the effects of space 16 allowance (SA; 1.9 m², 2.3 m²) during pregnancy and social training (ST; -, +) during the growing period on the 17 productivity and welfare of primiparous sows. Thirty-six gilts were divided into four groups based on space allowance 18 during gestation and social training during the growing period: 1) SA 1.9 m², non-ST (-), 2) SA 1.9 m², ST (+), 3) SA 19 2.3 m², non-ST (-), and 4) SA 2.3 m², ST (+). Measurements were basic performance, reproductive performance, 20 colostrum composition, lameness score, and number of skin lesions of primiparous sows. The sow group in SA 1.9 21 m^2 had higher (p < 0.05) body weight during farrowing crate relocation, litter weight of total litter, stillbirth, and alive 22 born, and number of skin lesions during the overall period of group housing than that in SA 2.3 m². However, there 23 were no effects of SA on colostrum composition and lameness score of sows. The sow group with ST had higher (p < p24 0.10) litter size of total born and alive born and fewer (p < 0.05) number of skin lesions during the overall period of 25 group housing than that without ST. However, no effects of ST were found on sow performance, colostrum 26 composition, and lameness score. In addition, there were no interaction effects between SA and ST on all 27 measurements in this study. In conclusion, primiparous sow aggression may be reduced by increasing space allowance 28 during gestation with social training during the growing period.

29

31

³⁰ Keywords: Group housing, Primiparous sows, Productivity, Social training, Space allowance, Welfare

Introduction

34 In the livestock industry, the conventional practice for managing pregnant sows involves individual confinement 35 in gestation stalls. This is a method characterized by limited space to facilitate efficient and cost-effective individual 36 management [1]. However, husbandry practices for sows are shifting from individual stalls to group housing driven 37 by evolving welfare regulations, policies concerning farm animals, and growing concerns among consumers regarding 38 animal welfare [1,2]. Recently, South Korea amended its livestock act to mandate group housing for pregnant sows 39 from a minimum of 6 gestation weeks until transferring to farrowing crates [3]. Compliance with this regulation is 40 required for new pig farms to seek permits and existing facilities must transfer from individual stalls to group housing 41 for pregnant sows by 2030. In the European Union, group housing for pregnant sows has been compulsory from 4 42 gestation weeks until transferring to the farrowing crates since 2008 [4].

Group housing for pregnant sows offers advantages over individual stalls by allowing animals to perform normal activities and behavior [5]. However, new social group formation can produce hierarchies and feed competition among sows, potentially leading to aggression, fear, injury, pain, and stress [6,7]. Stress can adversely affect the hypothalamus-pituitary-gonadal axis, influencing ovarian progesterone and estrogen secretion, and potentially causing reproductive dysfunction [8]. Moreover, higher incidences of lameness and lesions has been occurred in sows housed in group facilities than those housed in individual stalls, ultimately impacting economic returns for farmers due to reduced productivity resulting from competition for feed and rank [9].

50 Facility and environmental factors, including group housing space, socialization training, group type, feeding 51 system, and enrichment introduction, can affect aggression and stress levels in pregnant sows [5,6,10]. Socialization 52 training involves teaching sows to be more amicable through interactions with other individuals, thereby aiming to 53 reduce aggression during pregnancy based on previous experiences. A previous study showed that aggression of sows 54 was decreased after 2-4 re-introductions from 10 weeks to 5 months of age [11]. Various studies have focused on 55 reducing weaning stress in piglets by their socialization [12,13], but a notable gap exists in the research on the impact 56 of early socialization on aggression in group housing of pregnant sows. Additionally, housing space for pregnant sows 57 markedly influences feeding and rank competition [14,15]. While the European Union regulates a minimum housing 58 area of 2.25 m² per pregnant sow, South Korea lacks specific regulations regarding space allowances for group housing 59 of pregnant sows. The internal configuration of pig farms may vary in South Korea; however, an estimated minimum 60 space of 1.9 m² that can be converted into group housing is observed. Furthermore, a noticeable absence of domestic 61 research exists in addressing the mitigation of feed-and-rank competition that may arise in group housing. It is also 62 unclear whether sow's housing area and socialization mutually influence productivity and welfare. Therefore, this 63 study aimed to investigate how gestational housing space and rearing-phase socialization training affect sow 64 productivity and welfare during the pregnancy of sows, particularly in reducing aggression.

65

66

Materials and Methods

67 The experimental protocols were reviewed and approved by the Institutional Animal Care and Use Committee68 of the National Institute of Animal Science (NIAS-2021-527).

69

70 Experimental design and animals

71 For this experimental study, 60 gilts, with an average body weight of 31.56 ± 5.31 kg, were used as the research 72 subjects. These pigs were allocated to two treatment groups based on their exposure to socialization training during 73 the rearing phase. The pigs were then divided into six replicates, each consisting of five pigs, adhering to a completely 74 randomized design. Socialization training commenced at 10 weeks of age and continued for 4 months, which involved 75 a series of 4 re-introductions occurring at 4-week intervals, aimed at fostering socialization skills. During each re-76 introduction session, 2 to 3 selected individuals were introduced and allowed to interact with the pigs in the pen. We 77 carefully structured this process to introduce pigs to new individuals in each of the six pens. Furthermore, the selection 78 of individuals for re-introduction was based on their weight to minimize dominance behaviors due to body weight. At 79 approximately 8 months of age, 60 gilts underwent artificial insemination. Subsequently, 36 pregnant sows were 80 selected and categorized into two subgroups based on their assigned gestational housing areas of 1.9 m² and 2.3 m². 81 This resulted in four treatment groups following a 2×2 experimental design. Pregnant sows were placed into groups 82 with nine replicates, each containing one sow, following a completely randomized design. The group-housing period 83 was extended from 42 d after pregnancy initiation to the 110th d. All pregnant sows were relocated to the farrowing 84 crates at the end of this period. The chemical composition of basal diet used throughout the experimental period was 85 presented in Table 1. Diets were formulated to meet or exceed the nutrient requirements of gilts and sows 86 recommended by the National Research Council [16].

87

88 **Productivity measurements**

89 Growth performance

Body weight and feed consumption were measured at the beginning of each of the four re-introduction sessions, which took place at 4-week intervals, starting from the 10th week of age. The weight of any remaining feed in the feeders was deducted from the total quantity of test feed provided over the trial period to determine the daily feed intake. Daily weight gain and feed efficiency were computed using recorded body weight and feed intake data.

94

95 Sow performance

96 Body weight and backfat thickness were measured at four time points: 42 d and 110 d after artificial insemination,

97 within one day after farrowing, and weaning day. Backfat thickness was measured at P2 (5 cm from the center of the

- 98 10th rib on the left and right sides) using an ultrasound device (Anyscan BF, SongKang GLC, Gyeonggi-do, Korea).
- 99

100 *Reproductive performance*

101 Video cameras (HDR-AS50, Sony, Tokyo, Japan) were installed on every two sows before farrowing to record 102 farrowing intervals and total farrowing time to assess the reproductive performance and welfare of sows. Postpartum 103 management was conducted after farrowing and the birth weight and litter size of the piglets were recorded in detail. 104 The number of piglets per sow was adjusted within one day after farrowing, considering the piglet's weight to ensure 105 uniformity within the treatment groups. Piglets were weaned on the 28th day and the weight and number of piglets 106 were measured. The weaning-to-estrus interval was observed daily at 9 a.m. and 4 p.m. starting from the estrus period 107 following farrowing and the daily feed intake of lactating sows was accurately measured using an automatic feeder 108 (Automatic Feeder of Lactating Sows, Koca, Korea) for the entire lactation period.

109

110 Colostrum composition

Colostrum samples were collected to analyze its components from sows during active parturition with 2 to 4 piglets already delivered. These colostrum samples were stored in 50 mL tubes (Milkoscan FT 120, Fourier-transform infrared spectroscopy, Hillerod, Denmark) at -20°C until the time of analysis. The colostrum samples were thawed before analysis at room temperature (20 °C) and the colostrum components were analyzed using a milk analyzer (CombiScope FTIR 300 HP, Delta Instruments, JB Drachten, The Netherlands).

116

117 Welfare measurements

118 Lameness

119 Lameness was assessed on all pregnant sows before and after group housing at weeks 1, 3, 5, and 7. A lameness 120 assessment protocol was established by the previous study [17] and followed in this study. All pregnant sows were 121 allowed to engage in unrestricted movement by walking or trotting for approximately 30 m before assessing lameness. 122 The assessment employed a four-point scale: score 0, a natural gait with no apparent posture or movement 123 abnormalities; score 1, occasional signs of discomfort or minor alterations in gait while maintaining support from all 124 four limbs; score 2, one or more limbs were occasionally lifted off the ground during movement; score 3, one or more 125 limbs were incapable of bearing weight due to severe lameness, joint swelling, or pain-related vocalization. Three 126 evaluators assessed lameness and the final scores were the average of their evaluations.

127

128 Skin lesions

129 Skin lesions were assessed in all pregnant sows before and after mixing at 1, 3, 5, and 7 weeks. The measurement

130 method by the previous study [17] involved recording the number of scratches and lesions on the entire sow skin. A

131 single observer performed these assessments.

132

133 Statistical analyses

Data were analyzed using the GLM procedure of SAS (SAS Inst. Inc., Cary, NC, USA). The experimental design was a completely randomized design and experimental units were pen, sow, and litter. Statistical model for gilt performance and sow performance, reproductive performance, colostrum composition, lameness score, and skin lesions included treatments as main effects. Contrasts were used to compare effects of space allowance, social training, and interaction between space allowance and social training. Significance was set at p < 0.05 and marginally significant effects were considered at p < 0.10.

140

141

Results

142 **Productivity**

143 Growth performance of gilts

144 The impacts of socialization training on growth performance of gilts during the growing period were presented 145 in Table 2. There were no differences in body weight, average daily weight gain, average daily feed intake, and feed 146 efficiency after the completion of four re-introduction sessions.

147

148 Sow performance

The effects of space allowance during gestation and socialization training during the growing period on sow performance were presented in Table 3. The sow group in the 1.9-m² space had higher body weight at the time of relocation to farrowing crates (p < 0.05) and within one day post-farrowing (p = 0.052) than that in the 2.3-m² space. However, no effects of space allowance were found on backfat thickness of sows. In addition, there were no effects of socialization training and interaction between space allowance and socialization training on sow performance.

154

155 *Reproductive performance*

The effects of space allowance during gestation and socialization training during the growing period on reproductive performance were presented in Table 4. Space allowance did not affect gestation length, farrowing duration and interval, wean-to-estrus interval, and average daily feed intake. Additionally, there were no effects of space allowance on litter size (total and alive born, stillbirth, mummy, cross-fostering, and weaned). However, the sow group in the 1.9-m² space had higher (p < 0.05) litter weight of total born, stillbirth, and alive born than that in

161 the 2.3-m² space. In addition, the sow group with socialization training tended to have higher litter size of total and 162 alive born (p = 0.095; p = 0.081, respectively) than that without socialization training. However, socialization training 163 did not affect litter weight (total and alive born, stillbirth, mummy, cross-fostering, and weaned) and average daily 164 gain. There were no effects of interaction between space allowance and socialization training on sow reproductive 165 performance. 166 167 Colostrum composition 168 Table 5 presents the effects of gestational space allowance and socialization training during the growing period 169 on sow colostrum composition. There were no effects of space allowance, socialization training, and interaction 170 between space allowance on colostrum composition (total solids, protein, fat, and lactose) of sows. 171 172 Welfare 173 Lameness score and skin lesions 174 The effects of gestational space allowance and socialization training during the growing period on lameness score 175 and number of skin lesions of sows. The sow group in the 2.3-m² space had lower lameness score at the 5th week of 176 mixing in the group (p = 0.082) and fewer number of skin lesions at the 1st (p = 0.075), 5th (p < 0.10), and 7th (p < 0.10) 177 0.05) week of mixing in the group and total average (p < 0.05) than that in the 1.9-m² space. Additionally, the sow 178 group with socialization training had fewer (p < 0.05) number of skin lesions at the 1st week of mixing in the group 179 and total average than that without socialization training. There were no effects of interaction between space allowance 180 and socialization training on lameness score and skin lesions of sows. 181 Discussion 182

183 **Productivity**

184 Pigs exhibit enhanced social behaviors throughout their lives when subjected to early-stage socialization [18]. A 185 pivotal factor in mitigating aggression during group housing is the gradual familiarization of pigs with unfamiliar 186 conspecifics [7]. Socialization in pigs is predominantly acquired during the growing period; however, research on the 187 impact of socialization during this period on sow aggression is limited [6]. The present study showed gilts underwent 188 socialization training with new individuals once a month during their growing period for four months in total and the 189 growth performance of gilts was not different between the presence and absence of socialization training. A previous 190 study in which pigs weighing 18.63 ± 3.05 kg were divided into groups subjected to 1 and 3 mixing sessions until 191 slaughter showed similar results to the present study, indicating no significant differences in growth [19].

Contrastingly, another previous study showed the group subjected to mixing from the 11th week until slaughter had lower body weight of pigs at slaughter than the group without mixing [20]. Although research on mixing during the growth period is limited, the present suggested that socialization training during the growth period had no negative effects on the growth of growing gilts. However, further research on the welfare indicators, such as skin lesions and plasma cortisol levels, should be conducted based on socialization training during the growing period of gilts.

197 The reproductive efficiency of sows is a crucial metric for assessing the profitability of pig farms [21]. 198 Furthermore, sow performance plays a pivotal role in optimizing productivity based on factors such as weight and 199 backfat thickness [22]. In the present study, the weights of sows, including the total and live born weights, in the 1.9-200 m^2 housing space on the 110th day of pregnancy were higher than those in the 2.3-m² housing space. However, no 201 differences were found on other sow performances between different housing spaces. The weights of gestating sow 202 may fluctuate depending on the number and weight of the fetuses, but sows allocated to larger housing spaces may 203 have expended additional energy due to increased physical activity [23,24]. Furthermore, it was deduced that sows 204 raised in a 1.9-m² space had additional energy compared to those raised in a 2.3-m² space, positively influencing piglet 205 growth. According to previous studies, an increase in stocking density leads to elevated stress hormone levels in 206 gestating sows, negatively affecting their reproductive capacity [14]. However, the reproductive performance of 207 gestating sows demonstrated resilience to acute or repeated acute stress [25], maybe resulting in no effects of different 208 space allowances on reproductive performances of sows [26,27]. On the other hand, no consistent impacts of gestating 209 sow stocking density or available space on their reproductive performance were still observed [26,28,29].

210 In the present study, sow and reproductive performances following social training did not markedly differ; 211 however, sows that underwent social training tended to have higher litter size and weight than those that did not 212 undergo social training. An increase in skin lesions is associated with a decrease in the number of piglets born [30]. 213 Aggressive behaviors due to social hierarchy and feed competition in pregnant sow groups can act as stressors and the 214 stress that sows experience may have a negative impact on reproductive performance. In this study, the group that 215 underwent social training showed a markedly lower total average number of skin lesions during the group period than 216 the group that did not undergo social training. This can be inferred as a reduction in aggression due to social hierarchy 217 and feed competition through socialization. Therefore, the present study indicates that socialization during the growing 218 period may exert a positive impact on reproductive performance of sow.

Colostrum, a crucial factor that enhances the passive immunity and metabolic energy of piglets, is influenced by the diet and environment of sows during pregnancy and lactation [31]. However, the present study showed that no differences were found on colostrum composition based on space allowance and the presence of social training, which are similar results to previous studies [27,32]. This indicated that sow space allowance during gestation and the 223 presence or absence of socialization training during the growing period did not adversely affect the physiological

characteristics of sow colostrum.

225

226 Welfare

Several studies showed no association between space allowance and lameness of sows [33-35], which is similar results from the present study. However, a study encompassing 15 groups of pregnant sows across various farms in Belgium indicated a reduction in sow lameness rates for those housed in 3.0-m^2 spaces compared to those housed in 1.7-m^2 spaces [36]. In fattening pigs, the lameness scores were higher in large groups (n = 108) but lower in small groups (n = 18) [37].

232 The transition from individual stalls to group housing for gestating sows implies the encounter of new individuals. 233 Aggressive behaviors resulting from interactions with new pigs have long been a sustained animal welfare concern in 234 the swine industry [38]. Group housing for gestating sows involves introducing new individuals owing to the 235 replacement of candidate sows, leading to inevitable encounters with unfamiliar conspecifics. This inevitably results 236 in stress for the gestating sows, and sows with less experience or smaller body sizes may be subordinate to other sows. 237 Previous studies reported increased lameness levels, claw lesions, and skin lesions in sows during gestation group 238 housing [6,39]. Recent lameness level of sows has been suggested as a crucial metric for evaluating welfare [40] and 239 is one of the indicators in the European Welfare Quality® protocol, which is utilized for assessing sow welfare in 240 Europe [41]. Skin lesions serve as an indicator of sow aggression and are closely associated with productivity [30]. 241 Typically, aggression peaks immediately after mixing and diminishes as a social hierarchy is established [15]. In the 242 present study, higher skin lesion incidences were observed during the initial mixing stages, followed by a gradual 243 reduction over time irrespective of the treatment group.

244 The present study showed increasing space allowance demonstrated a trend toward decreased lameness scores 245 around the fifth gestation week. Aggression in sows has been suggested to predominantly arise from the establishment 246 of social hierarchy or in the context of feed competition [5]. Aggression related to social hierarchy establishment and 247 securing feed is characterized by lower frequency but higher intensity or by shorter duration and higher frequency. 248 The timeframe for establishing a social hierarchy after introducing unfamiliar individuals through mixing has been 249 reported to be 2 to 10 d [26]. Pregnant sows introduced through mixing may require additional space to establish a 250 social hierarchy and the offering additional space could potentially assist in reducing injuries resulting from conflicts 251 during the period of social hierarchy establishment [26].

Sows housed in a space allowance of 2.3 m² during gestation exhibited fewer skin lesions than those housed in 1.9 m², excluding the third week of mixing. Similar to the findings in our treatment groups for skin lesions, sows housed in the 3.0-m² space exhibited fewer skin lesions than those housed in the 2.25-m² space [29]. Additionally, sows housed in 1.4 m² spaces consistently demonstrated higher lesion scores than sows housed in 2.3- or 3.3-m² spaces [14]. However, the impact of space on overall skin lesions was shown to be minimal or nonexistent when pregnant
sows were housed in space levels ranging from 1.4 through 3.0 m² [15,26].

258 Social experience is widely known to considerably influence aggressive behaviors. Aggression relies on social 259 experience in pigs mixed at a similar age. When piglets from different sows underwent socialization tests, they 260 approached unfamiliar pigs more quickly [42] and inflicted fewer injuries [43] than those that did not undergo the 261 tests. It may mean socialized pigs formed a stable social hierarchy more quickly [44]. Furthermore, individuals re-262 introduced by mixing with piglets from different litters during the lactation period had less mammary damage [18] 263 and the subsequent re-mingling positively influenced pig behavior and welfare. Research on the impact of socialization 264 during the growing period on sow aggression in group-housed settings is limited. A previous study suggested that 265 exposing individuals to others during the growing period can reduce aggression during group housing [6]. Similar to 266 the results of our study, a reduction in aggressive behavior was observed in the treatment group, where primiparous 267 sows were introduced to a new group after acquiring affiliative behaviors through 2 to 4 re-introductions from 10 268 weeks to 5 months of age, compared to the control group [11]. The results of the present study showed a reduction in 269 aggression during the 1- to 2-week period when a social hierarchy was established in the treatment group that 270 underwent socialization training. However, no influence on aggression was noticed among sows within the group after 271 social hierarchy establishment. Nevertheless, socialized sows had a positive impact on skin lesions throughout the 272 gestation period.

273

274

Conclusions

275	Expanding gestational housing space and incorporating socialization training during the growing period had
276	positive impacts on reducing sow aggression.
277	
278	Acknowledgments
279	The research for this study was carried out with the support of "Cooperative Research Program for Agriculture
280	Science and Technology Development (Project No. PJ01623002, RS-2021-RD010166)," Rural Development
281	Administration, Republic of Korea.
282	

284		References
285	1.	Schaffner JE. An introduction to animals and the law. 1st ed. Springer; 2010.
286 287	2.	Matthews LR, Hemsworth PH. Drivers of change: Law, international markets, and policy. Anim Front 2012;2:40-45.
288 289 290	3.	National Assembly of South Korea, Livestock Industry Act of 25 February 2020 Amending Chapter Permission for Livestock Farming Business/Article 14/Act No 30477, Official Journal, National Assembly of South Korea, Korea, February 25, 2020.
291 292 293	4.	EUR-Lex, European Council Directive 2001/88/EC of 23 October 2001 Amending Directive 91/630/EEC, Laying Down Minimum Standards for the Protection of Pigs, Official Journal, EUR-Lex, EU, October 23, 2001, 36-38.
294 295	5.	Maes D, Pluym L, Peltoniemi O. Impact of group housing of pregnant sows on health. Porc Health Manag. 2016;2:1–7.
296 297	6.	Verdon M, Hansen, CF, Rault JL, Jongman E, Hansen LU, Plush K, Hemsworth PH. Effects of group housing on sow welfare: A review. J Anim Sci. 2015;93:1999–2017.
298 299	7.	Velarde A. Agonistic behaviour. In: Velarde A, Geers R, editors. On farm monitoring of pig welfare. Wageningen Academic Press, Wageningen, The Netherlands: 2007. p. 53–56.
300 301	8.	Einarsson S, Madej A, Tsuma V. The influence of stress on early pregnancy in the pig. Anim Reprod Sci. 1996;42:165–172.
302 303	9.	Anil SS, Anil L, Deen J. Evaluation of patterns of removal and associations among culling because of lameness and sow productivity traits in swine breeding herds. JAVMA. 2005;226:956–961.
304 305	10.	Spoolder HAM, Geudeke MJ, Van der Peet-Schwering CMC, Soede NM. Group housing of sows in early pregnancy: A review of success and risk factors. Livest Sci. 2009;125:1–14.
306 307	11.	Van Putten G, Buré RG. Preparing gilts for group housing by increasing their social skills. Appl Anim Behav Sci. 1997;54:173–183.
308 309	12.	D'Eath RB. Socialising piglets before weaning improves social hierarchy formation when pigs are mixed post- weaning. Appl Anim Behav Sci. 2005;93:199–211.
310 311	13.	Camerlink I, Proßegger C, Kubala D, Galunder K, Rault JL. Keeping littermates together instead of social mixing benefits pig social behaviour and growth post-weaning. Appl Anim Behav Sci. 2021;235:105230.
312 313	14.	Salak-Johnson JL, Niekamp SR, Rodriguez-Zas SL, Ellis M, Curtis SE. Space allowance for dry, pregnant sows in pens: Body condition, skin lesions, and performance. J Anim Sci. 2007;85:1758–1769.

- Hemsworth PH, Rice M, Nash J, Giri K, Butler KL, Tilbrook AJ, Morrison RS. Effects of group size and floor space allowance on grouped sows: Aggression, stress, skin injuries, and reproductive performance. J Anim Sci. 2013;91:4953–4964.
- 317 16. National Research Council [NRC]. Nutrient requirements of swine. 11th ed. Washington, DC: National Academy Press; 2012.
- Min Y, Choi Y, Kim J, Kim D, Jeong Y, Kim Y, Song M, Jung, H. Comparison of the Productivity of Primiparous
 Sows Housed in Individual Stalls and Group Housing Systems. Animals. 2020;10:1940.
- 18. Camerlink I, Farish M, D'Eath RB, Arnott G, Turner SP. Long term benefits on social behaviour after early life
 socialization of piglets. Animals. 2018;8:192.
- da Fonseca de Oliveira AC, Costa LB, Weber SH, Ramayo-Caldas Y, Dalmau A. Mixed management in growing
 and finishing pigs: Differences between gender and their impacts on behavior, growth performance, and
 physiological parameters. Plos one. 2023;18:e0284481.
- 20. Camp Montoro J, Pessoa J, Solà-Oriol D, Muns R, Gasa J, Manzanilla EG. Effect of phase feeding, space allowance and mixing on productive performance of grower-finisher pigs. Animals. 2022:12:390.
- Britt JH. Improving sow productivity through management during gestation, lactation and after weaning. J Anim Sci. 1986;63:1288–1296.
- 22. Charette R, Bigras-Poulin M, Martineau GP. Body condition evaluation in sows. Livest Prod Sci. 1996;46:107–115.
- 332 23. Noblet J, Shi XS, Dubois S. Energy cost of standing activity in sows. Livest Prod Sci. 1993;34:127–136.
- 24. Peltoniemi O, Björkman S, Maes D. Reproduction of group-housed sows. Porc Health Manag. 2016;2:1–6.
- Turner AI, Hemsworth PH, Tilbrook AJ. Susceptibility of reproduction in female pigs to impairment by stress or
 elevation of cortisol. Domest Anim Endocrinol. 2005;29:398–410.
- Li YZ, Cui SQ, Yang XJ, Johnston LJ, Baidoo SK. Minimal floor space allowance for gestating sows kept in pens with electronic sow feeders on fully slatted floors. J Anim Sci. 2018;96:4195–4208.
- Zhou Q, Sun Q, Wang G, Zhou B, Lu M, Marchant-Forde JN, Yang X, Zhao R. Group housing during gestation affects the behaviour of sows and the physiological indices of offspring at weaning. Animal. 204;8:162–1169.
- Séguin MJ, Barney D, Widowski TM. Assessment of a group-housing system for gestating sows: Effects of space
 allowance and pen size on the incidence of superficial skin lesions, changes in body condition, and farrowing
 performance. J Swine Health Prod. 2006;14:89–96.

- Remience V, Wavreille J, Canart B, Meunier-Salaun MC, Prunier A, Bartiaux-Thill N, Nicks B, Vandenheede
 M. Effects of space allowance on the welfare of dry sows kept in dynamic groups and fed with an electronic sow
 feeder. Appl Anim Behav Sci. 2008;112:284–296.
- 346
 30. Tönepöhl B, Appel AK, Voß B, von Borstel UK, Gauly M. Interaction between sows' aggressiveness post mixing and skin lesions recorded several weeks later. Appl Anim Behav Sci. 2013;144:108–115.
- 348 31. Farmer C, Quesnel H. Nutritional, hormonal, and environmental effects on colostrum in sows. J Anim Sci. 2009;87:56–64.
- 350 32. Min Y, Choi Y, Kim J, Kim D, Jeong Y, Kim Y, Song M, Jung, H. Comparison of the Productivity of Primiparous
 351 Sows Housed in Individual Stalls and Group Housing Systems. Animals. 2020;10:1940.
- 33. Mack LA, Lay Jr, DC, Eicher SD, Johnson AK, Richert BT, Pajor EA. Group space allowance has little effect on sow health, productivity, or welfare in a free-access stall system. J Anim Sci. 2014;92:2554–2567.
- 354 34. Heinonen M, Oravainen J, Orro T, Seppä-Lassila L, Ala-Kurikka E, Virolainen J, Tast A, Peltoniemi OAT.
 355 Lameness and fertility of sows and gilts in randomly selected loose-housed herds in Finland. Vet Rec.
 356 2006;159:383–387.
- 357 35. Gjein H, Larssen RB. The effect of claw lesions and claw infections on lameness in loose housing of pregnant sows. Acta Vet Scand. 1995;36:451–459.
- 36. Pluym LM, Maes D, Van Weyenberg S, Van Nuffel A. Risk factors for development of lameness in gestating sows within the first days after moving to group housing. Vet J. 2017;220:28–33.
- 361 37. Street BR, Gonyou HW. Effects of housing finishing pigs in two group sizes and at two floor space allocations
 362 on production, health, behavior, and physiological variables. J Anim Sci. 2008;86:982–991.
- 363 38. Peden RS, Turner SP, Boyle LA, Camerlink I. The translation of animal welfare research into practice: The case
 364 of mixing aggression between pigs. Appl Anim Behav Sci. 2018;204:1–9.
- 365 39. Chapinal N, Ruiz de la Torre JR, Cerisuelo A, Gasa J, Baucells MD, Coma J, Vidal A, Manteca X. Evaluation
 366 of welfare and productivity in pregnant sows kept in stalls or in 2 different group housing systems. J Vet Behav
 367 2010;5:82–93.
- Whay HR, Main DC, Green LE, Webster AJ. Animal-based measures for the assessment of welfare state of dairy cattle, pigs and laying hens: consensus of expert opinion. Animal Welfare. 2003;12:205–217.
- Welfare Quality Consortium, Welfare Quality® Assessment Protocol for Pigs (sows and piglets, growing and finishing pigs), Technical Report, Welfare Quality Consortium, Netherlands, 122.
- 42. Hillmann E, von Hollen F, Bunger B, Todt D, Schrader L. Farrowing conditions affect the reactions of piglets towards novel environment and social confrontation at weaning. Appl Anim Behav Sci. 2003;81:99–109.

- 374
 43. Olsson IAS, de Jonge FH, Schuurman T, Helmond FA. Poor rearing conditions and social stress in pigs: Repeated social challenge and the effect on behavioural and physiological responses to stressors. Behav Processes. 1999;46:201–215.
- 44. Newberry RC, Špinka M, Cloutier S, Ramos A, Pinheiro Machade LC, Hotzel MJ. Early social experience of piglets affects rate of conflict resolution with strangers after weaning. In: Proceedings of the 34th International Congress of International Society for Applied Ethology. 2000. Florianópolis, Brazil.

Tables and Figures

Table 1. Chemical composition of the experimental diets (on an as-fed basis)

Ingredient, %	Growing period	Gestation	Lactation
Corn	73.09	58.80	59.47
Lupine seed	-	6.00	-
Wheat bran	5.00	11.00	8.00
Soybean hull	-	4.00	-
Soybean meal	16.50	9.00	21.10
Rapeseed meal	-	3.00	3.00
Animal fat	1.00	2.50	3.60
Molasses	2.00	1.80	0.50
L-Lysine	0.20	0.33	0.57
Threonine	-	0.02	0.15
Tryptophan	-	0.10	0.05
Mono-dicalcium phosphate	0.58	1.50	1.20
Limestone	0.78	1.38	1.67
Salt	0.30	0.40	0.40
Vitamin and mineral premix ¹	0.50	0.15	0.15
Phytase	0.05	0.02	0.02
Total	100.00	100.00	100.00
Chemical composition, %			
Digestible energy (kcal/kg)	3,300	3,300	3,480
Crude protein	15.20	14.31	17.31
Calcium	0.64	0.93	0.96
phosphorus	0.54	0.67	0.64
Lysine	0.94	0.79	1.05
Methionine	0.30	0.22	0.33
Threonine	0.57	0.53	0.78

¹Supplined per kilogram diet: vitamin A, 9600.00 IU; vitamin D₃, 1800.00 IU; vitamin E, 24 mg; vitamin K₃,

384 niacin, 45 mg; biotin, 0.09 mg; folic acid, 0.39 mg; Fe, 150 mg; Cu, 06 mg; Zn, 72 mg; Mn, 46.5 mg; I, 0.9 mg; Se,

385 0.3 mg.

^{383 1.5} mg; vitamin B_1 , 1.5 mg; vitamin B_2 , 12 mg; vitamin B_6 , 2.4 mg; vitamin B_{12} , 0.045 mg; pantothenic acid, 24 mg;

Itom	Social T	raining	CEM		
Item	-	+	SEM	<i>p</i> -value	
Post 1 st mixed					
Initial BW, kg	31.59	31.52	2.26	0.985	
Final BW, kg	56.58	56.90	2.96	0.940	
ADG, g	833.00	845.89	25.20	0.727	
ADFI, g	1,825.78	1,808.45	39.80	0.766	
G:F, g/g	0.46	0.47	0.01	0.439	
Post 2 nd mixed					
Initial BW, kg	56.58	56.90	3.06	0.942	
Final BW, kg	84.28	86.39	3.56	0.689	
ADG, g	1,026.17	1,092.35	38.95	0.318	
ADFI, g	2,598.76	2,604.94	64.39	0.951	
G:F, g/g	0.39	0.42	0.01	0.156	
Post 3 rd mixed					
Initial BW, kg	84.28	86.39	3.66	0.696	
Final BW, kg	116.81	116.34	2.78	0.907	
ADG, g	1,084.22	998.22	50.30	0.260	
ADFI, g	3,051.89	2,998.11	30.38	0.239	
G:F, g/g	0.36	0.33	0.02	0.344	
Post 4 th mixed					
Initial BW, kg	116.81	116.34	2.96	0.913	
Final BW, kg	141.98	140.23	3.15	0.704	
ADG, g	1,144.02	1,085.76	25.33	0.135	
ADFI, g	3,484.33	3,433.33	27.94	0.230	
G:F, g/g	0.33	0.32	0.01	0.153	
Overall					
Initial BW, kg	31.59	31.52	2.26	0.985	
Final BW, kg	141.98	140.23	3.15	0.704	
ADG, g	1,021.85	1,005.55	11.51	0.353	
ADFI, g	2,740.19	2,711.21	28.83	0.496	
G:F, g/g	0.38	0.38	0.01	0.825	

Table 2. Effects of social training during growing periods on growth performance of gilts

387 BW, body weight; ADG, average daily gain; ADFI, average daily feed intake; G:F, gain to feed intake ratio;

388 SEM, standard error of means.

Item		Treat	ments						
Space Allowance, m ²	1.9		2	2.3		<i>p</i> -value			
Social Training	-	+	-	+	SEM	SA	ST	SA × ST	
Body weight, kg									
Gestation									
At d 42	179.50	181.71	180.29	180.75	2.80	0.976	0.651	0.767	
At d 110	232.13	235.43	218.00	222.88	4.05	0.004	0.342	0.854	
Post farrowing	229.88	231.71	222.29	225.63	3.16	0.052	0.448	0.825	
Weaned	201.75	205.00	200.43	204.38	4.42	0.828	0.426	0.938	
Backfat thickness, mm									
Gestation					\checkmark				
At d 42	20.19	20.93	21.79	20.81	0.75	0.353	0.883	0.284	
At d 110	21.94	22.00	22.29	22.50	0.72	0.588	0.859	0.923	
Post farrowing	23.00	23.93	23.57	22.69	0.68	0.648	0.895	0.222	
Weaned	18.75	18.64	18.36	19.31	0.94	0.887	0.832	0.587	

Table 3. Effects of space allowance and social training on basic performance of primiparous sows

SEM, standard error of means; SA, space allowance; ST, social training; SA × ST, interaction between space

allowance and social training.

392 Table 4. Effects of space allowance and social training on reproductive performance of primiparous sows

Item		Treat	ments						
Space Allowance, m ²	1.9		2	2.3		<i>p</i> -value			
Social Training	-	+	-	+	SEM	SA	ST	$\mathbf{SA} \times \mathbf{ST}$	
Gestation length, d	115.38	115.57	114.71	115.88	0.51	0.762	0.381	0.224	
Farrowing									
Duration, min	336.44	263.82	243.57	263.71	33.23	0.362	0.555	0.793	
Interval, min	31.44	20.48	23.34	21.02	2.88	0.693	0.100	0.552	
Wean-to-estrus interval, d	5.63	5.86	5.57	5.88	0.26	0.968	0.258	0.660	
Average daily feed intake, kg	4.71	5.34	5.35	5.61	0.19	0.228	0.246	0.914	
Litter size, n									
Total born	11.13	12.71	10.71	12.88	0.93	0.390	0.095	0.701	
Stillbirth	1.00	0.57	0.86	0.88	0.37	0.234	0.129	0.186	
Mummy	0.13	ND	0.57	1.38	0.42	0.260	0.727	0.539	
Alive born	10.00	12.14	9.29	10.63	0.91	0.185	0.081	0.235	
Cross-fostering	10.13	10.71	10.14	10.25	0.54	0.706	0.557	0.684	
Weaned	9.38	9.71	10.00	9.88	0.55	0.513	0.858	0.698	
Litter weight, kg									
Total born	16.05	18.26	13.23	14.73	1.23	0.015	0.253	0.086	
Stillbirth	1.15	0.74	0.76	0.83	0.41	0.043	0.179	0.657	
Alive born	14.89	17.52	12.47	13.91	1.10	0.024	0.122	0.379	
Cross-fostering	14.60	15.49	14.24	13.97	0.88	0.322	0.739	0.536	
Weaned	78.39	82.17	85.72	79.33	4.34	0.616	0.771	0.261	
Average daily gain, g/pig	258.45	252.04	242.14	244.69	11.24	0.586	0.581	0.967	

393

SEM, standard error of means; SA, space allowance; ST, social training; SA × ST, interaction between space

allowance and social training; ND, not detected.

N°

Table 5. Effects of space allowance and social training on colostrum composition of primiparous sows

Item	em Treatments							
Space Allowance, m ²	1	2.3			<i>p</i> -value			
Social Training	- + - + SEN		SEM	SA	ST	SA × ST		
Total solids, %	115.38	115.57	114.71	115.88	0.51	0.762	0.381	0.224
Protein, %	336.44	263.82	243.57	263.71	33.23	0.362	0.555	0.793
Fat, %	31.44	20.48	23.34	21.02	2.88	0.693	0.100	0.552
Lactose, %	5.63	5.86	5.57	5.88	0.26	0.968	0.258	0.660

396 SEM, standard error of means; SA, space allowance; ST, social training; SA × ST, interaction between space

allowance and social training.

Table 6. Effects of space allowance and social training on lameness score and number of skin lesions of primiparous

399 sows

Item		Treatments						
Space Allowance, m ²	1.	9	2.	2.3		<i>p</i> -value		
Social Training	-	+	-	+	SEM	SA	ST	$SA \times ST$
Lameness score								
Initial	ND	ND	ND	ND				
At week 1	ND	0.11	ND	0.11	0.06	1.000	0.167	1.000
At week 3	0.11	0.22	ND	0.22	0.12	0.703	0.257	0.703
At week 5	0.33	0.33	ND	0.11	0.13	0.082	0.722	0.722
At week 7	0.11	0.33	ND	0.11	0.11	0.248	0.248	0.697
Total average	0.11	0.20	ND	0.11	0.07	0.275	0.275	0.903
Skin lesions, n								
Initial	0.44	0.44	0.56	0.11	0.18	0.546	0.231	0.231
At week 1	65.78	40.67	56.67	20.44	7.81	0.075	0.001	0.491
At week 3	22.44	16.33	18.56	11.78	4.05	0.332	0.142	0.938
At week 5	13.67	12.00	10.67	6.11	2.31	0.074	0.205	0.552
At week 7	14.78	13.56	8.56	2.67	2.80	0.014	0.286	0.482
Total average	23.42	16.60	19.00	8.22	2.81	0.033	0.004	0.497

400

SEM, standard error of means; SA, space allowance; ST, social training; SA × ST, interaction between space

401 allowance and social training; ND, not detected.