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Abstract  8 

The main objective of this study was to investigate the effects of pollen patty with 9 

supplementation of different concentrations of curcumin-steviol glycoside complex (CSG) in 10 

Apis mellifera (A. mellifera). Twelve colonies of A. mellifera were conducted from July 10th to 11 

August 21st for 42 days. A. mellifera were assigned to four dietary treatments with 3 replicates of 12 

equal size as follows: (NC, no supplementation of pollen patty; PC, supplementation of basal 13 

pollen patty; T1, supplementation of basal pollen diets + 0.04% of CSG; T2, supplementation of 14 

basal pollen diets + 0.08% of CSG). The percentage of CSG was calculated based on the total 15 

weight of pollen patties. Thorax weight was significantly increased (p < 0.05) in the T2 diet 16 

compared with the NC and PC diet. There was no significant difference (p > 0.05) in pollen 17 

patties consumption among the PC, T1, and T2 diets. The T1 and T2 diets showed significantly 18 

higher (p < 0.05) honey production than the PC and NC diets. Also, the PC diet showed 19 

significantly higher (p < 0.05) honey production than the NC diet. The T2 showed significantly 20 

higher (p < 0.05) brood area than the PC and NC diets at 28 and 42 days. In addition, the PC and 21 

T1 diets showed significantly higher (p < 0.05) brood areas than the NC diet. The T1 and T2 22 

diets showed significantly higher (p < 0.05) catalase and superoxide dismutase (SOD) 1 gene 23 

expression than the PC and NC diets. The expression of the thioredoxin reductase (Trxr) 1 gene 24 

was significantly higher (p < 0.05) in the T1 diet, and decreased in the order of the PC, T2, and 25 

NC diets. The expression of the SOD2 gene was significantly higher (p < 0.05) in the T1 diet 26 

than the PC and T2 diets and was significantly lower (p < 0.05) in the NC diet. Therefore, 27 

supplementation of CSG to pollen patty might be the ideal strategy to improve A. mellifera 28 

performances.    29 

Keywords (3 to 6): Apis mellifera, Curcumin-steviol glycoside complex, Pollen patty 30 

31 
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Introduction 32 

Pollen-supplementary diets play a major role in honeybee health and honey production. 33 

Supply of artificial pollen diets to honeybee colonies is necessary for the development of young 34 

bee brood rearing, reproduction and maintenance of bee colonies, and honeybee production [1-3]. 35 

In cases of insufficient pollen supply, the immune system of bees and their strength weaken, 36 

which directly increases their mortality rate from attacks by various bee pests and pathogens [4-37 

6]. Thus, most beekeepers feed honeybee colonies with pollen supplements such as defatted 38 

soybean, maize, and gram flour, especially when the natural pollen is not sufficient to maintain 39 

colony health and immunity in June-July [3, 7, 8]. Also, beekeepers supply artificially 40 

synthesized food known as pollen patties to increase food storage and nutrition in the winter 41 

season [9]. Therefore, several researchers have formulated and tested various artificial pollen 42 

diets to supply sufficient nutrients to maintain bee colonies [10-12]. 43 

Pollen patties, which contain bee-collected pollen, are mixed with different ingredients to meet 44 

the desired nutrient requirement [13]. Supplements contain bee-collected pollen mixed with other 45 

ingredients, such as soybean flour and honey, to form the desired patty consistency [14]. 46 

Therefore, numerous studies have evaluated the effects of supplying pollen patties and 47 

identifying new materials for improving honeybee performance and honey production [4, 12].    48 

Curcumin, which is produced by Curcuma longa L., is a natural phenol that promotes 49 

therapeutic properties such as anti-inflammatory, anticarcinogenic, and antioxidant activities [15-50 

17]. Also, curcumin has been shown to be a bifunctional antioxidant that scavenges reactive 51 

oxygen species and triggers an antioxidant response to exert antioxidant activity both directly 52 

and indirectly [18, 19].  However, curcumin possesses low absorption due to its impaired water 53 

solubility, unstable chemical structure, and rapid metabolism in the body [20, 21]. To improve 54 

the bioavailability of curcumin, steviol glycosides have been used to increase the solubility by 55 
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utilizing the solubilizing properties [22]. Steviol glycosides are substances extracted from stevia 56 

(Stevia rebaudiana Bertoni) leaves that have been reported to improve solubility by dissolving 57 

soluble substances [23, 24]. Thus, the supplementation of pollen patties with a curcumin-steviol 58 

glycoside complex (CSG) could be an ideal strategy to increase immune systems and alleviate 59 

the adverse effects of bacteria and pathogens. 60 

Therefore, the main objective of this study was to investigate the effects of pollen patty with 61 

supplementation of different concentrations of CSG on body weight, diet consumption, honey 62 

production, brood area measurement, and antioxidant gene expression. 63 

64 
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Materials and Methods  65 

Experimental colonies with pollen patty diets 66 

Twelve colonies of A. mellifera were conducted from July 10th to August 21st for 42 days at 67 

Chungbuk National University (36˚37’48" N, 12727’5” E) in Cheongju-si, Republic of Korea. 68 

The formulation of pollen patties is shown in Table 1. The CSG used in this experiment was 69 

obtained from a commercial company (BIOTEN, Jeongeup, Korea). A. mellifera were assigned 70 

to four dietary treatments with 3 replicates of equal size as follows: (NC, no supplementation of 71 

pollen patty; PC, supplementation of basal pollen patty; T1, supplementation of basal pollen 72 

diets + 0.04% of CSG; T2, supplementation of basal pollen diets + 0.08% of CSG). The 73 

percentage of CSG was calculated based on the total weight of pollen patties. Each of the four 74 

groups consisted of 1 populated frame and 3 brood frames. Pollen patty diets were directly 75 

placed over the brood nests of bee colonies and covered with plastic sheets to prevent drying. 76 

They were freely and easily available to the A. mellifera colonies. The consumption of pollen 77 

patties was checked every day, and new pollen patties (300 g) were supplied every week.  78 

Chemical compositions of pollen patties 79 

Compositions of moisture content, crude protein, ether extract, crude ash, crude fiber, and 80 

nitrogen free extract (NFE) were analyzed according to the standard recommended by the 81 

Association of Official Analytical Chemists (AOAC) [25].  82 

Moisture content was calculated by drying the sample in an oven at 100℃ for 2 h. The dried 83 

sample was placed into desiccators, cooled down and then reweighed. This process was repeated 84 

until a constant weight was obtained. Crude protein was analyzed by the Dumas method (Rapid 85 

MAX N-Exceed, Elementar, Langenselbold, Germany) [26]. The ether extract was analyzed by 86 

using a Soxhlet extractor (EAM model, Misung Scientific Co. Ltd, Seoul, Korea) [25]. Crude ash 87 

was analyzed according to the method of AOAC by using dry oven circulation (550℃) [25]. The 88 
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percentage of crude fiber was determined according to the method of AOAC [25]. Calculating 89 

the NFE used the following formula: 100 - (Crude protein + Ether extract + Crude fiber + Crude 90 

ash+ H2O). All the analyzed data were expressed as mean ± standard deviation.  91 

Body weight 92 

A. mellifera were divided into three body parts to determine the effects of CSG. Total body 93 

weight, thorax weight, head weight, and abdomen weight were measured by dehydrating to a 94 

persistent temperature (60°C for a period of 48 h) [27]. 95 

Diet consumption 96 

The amount of pollen patty consumed was calculated by subtracting the weight of pollen 97 

patties and the weight of 1-day-old pollen patties after being placed in the colony (Patty 98 

consumption = beginning patty weight-ending patty weight). The weight of pollen patties was 99 

measured every day. The data were obtained by recording each formulated diet. The total 100 

consumption for each diet during the experimental period (42 days) was also calculated. 101 

Honey production 102 

At the end of the experiment, the production of honey was measured in g by harvesting with 103 

an extracting machine (Manual honey harvester) to compare honey production for each colony.  104 

 Brood area measurement 105 

Sealed worker brood area was calculated after 14, 28 and 42 days by using measuring a frame 106 

wire grid with divisions giving an area of one square inch each [28-30] and then converted in to 107 

cm2 by multiplying with 2.54. Sealed brood was used as a criterion for evaluating the 108 

development of colonies.  109 

Reverse transcription and quantitative polymerase chain reaction  110 

A. mellifera were collected at 42 days, and the head, wings, and legs were removed to obtain 111 

the thorax and abdomen. The RNA was extracted from the obtained thorax and abdomen using 112 
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the total RNA extraction kit (iNtRON Biotechnology, Seongnam, Korea). The mRNA was 113 

converted to cDNA using high-capacity cDNA Reverse transcription kit (Applied Biosystems, 114 

Waltham, MA, USA). The mixed solution was heat treated at 25°C for 10 min, at 37°C for 2 h, 115 

and at 85°C for 5 min. Gene amplification was performed using the Fast qPCR 2×SYBR Green 116 

Master Mix (Applied Biosystems). Gene amplification was performed for 40 cycles as followed 117 

cycle: 50°C for 2 min and 95°C for 10 min; 15 secs at 95°C; 1 min at 53°C; 15 secs at 95°C; 1 118 

min at 53°C. The target genes were catalase, thioredoxin reductase 1 (Trxr1), superoxide 119 

dismutase 1 (SOD1), superoxide dismutase 2 (SOD2) and glyceraldehyde-3-phosphate 120 

dehydrogenase 2 (GAPDH). Primers used in the amplification are shown in Table 2 below. 121 

Normalization was performed using the reference gene GAPDH. Relative gene expression was 122 

analyzed using the 2−ΔΔCt method [31]. 123 

Statistical analysis 124 

All data were statistically processed using the one-way ANOVA using JMP Pro 16 (JMP®  Pro 125 

version 16.0.0, SAS Institute, Cary, NC, USA), using each pen as the experimental unit. 126 

Differences among all treatment means were determined using the Tukey multiple-range test. 127 

The level of significance was established at p < 0.05. 128 
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Results 130 

Body weight 131 

As shown in Table 3, thorax weight was significantly increased (p < 0.05) in the T2 diet (9.80 132 

g) compared with the NC (8.90 g) and PC diet (9.00 g) at 42 days. There was no significant 133 

difference (p > 0.05) in head, abdomen, and total BW at 0, 14, 28, and 42 days.  134 

Diet consumption 135 

As shown in Table 4, there was no significant difference (p > 0.05) in pollen patties 136 

consumption among the PC, T1, and T2 diet.  137 

Honey production 138 

As shown in Figure 1, the T1 and T2 diets showed significantly higher (p < 0.05) honey 139 

production than the PC and NC diets. Also, the PC diet showed significantly higher (p < 0.05) 140 

honey production than the NC diet.  141 

Brood area 142 

As shown in Figure 2, the T2 diet showed significantly higher (p < 0.05) brood area than the 143 

PC and NC diets at 28 and 42 days. Also, the PC and T1 diets showed significantly higher (p < 144 

0.05) brood areas than the NC diet. There was no significant difference (p > 0.05) at 0 and 14 145 

days. 146 

Gene expression 147 

As shown in Figure 3, the T1 and T2 diets showed significantly higher (p < 0.05) Catalase and 148 

SOD1 gene expression than the PC and NC diets. The expression level of the Trxr1 gene was 149 

significantly higher (p < 0.05) in the T1 diet, and decreased in the order of the PC, T2, and NC 150 

diets. The expression level of the SOD2 gene was significantly higher (p < 0.05) in the T1 diet 151 

than in other diets and was lower in the NC diet. 152 

153 
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Discussion  154 

Total body, thorax, head, and abdomen weight  155 

A higher thorax weight in A. mellifera has been suggested to induce stronger and more agile 156 

flight, which improves their foraging activities [32]. Numerous studies have demonstrated the 157 

positive correlation between thorax weight and flight performance [33, 34]. Therefore, higher 158 

thorax weight is considered an index of higher flight performance in A. mellifera [35, 36].  159 

During the flight, A. mellifera significantly increases its metabolic rate, which, in turn, 160 

increases its flight foraging activity times in collecting pollen [34, 35]. Carbohydrate catabolism 161 

plays a major role in producing an adequate metabolic rate to improve flight in A. mellifera [39]. 162 

Also, Teulier et al. [40] have demonstrated that A. mellifera utilizes carbohydrates as a metabolic 163 

fuel for flight. Moreover, Brodschneider et al. [35] have reported that when insufficient nutrition 164 

is provided, delayed maturation of the enzymes of carbohydrate metabolism induces impaired 165 

flight performance, which decreases the thorax weight in A. mellifera.  166 

In this study, we observed a higher thorax weight and amount of NFE in supplementation of 167 

CSG. According to Ghosh and Jung [9], the NFE represents the soluble carbohydrates in pollen 168 

patties. This result indicates that supplementation of CSG increases the content of the 169 

carbohydrate in the pollen patty. Also, a previous study has reported that supplementation of 170 

curcumin could increase the digestibility of carbohydrates by improving intestinal enzymes [41]. 171 

Therefore, increased thorax weight might be reasonable due to the increase of carbohydrate and 172 

enhanced utilization of carbohydrates by supplementing CSG in this study. 173 

In contrast, no significant differences were observed in total body, head, and abdomen weight 174 

in this study. Previous studies demonstrated that supplementation of dietary protein increases the 175 

size of the hypopharyngeal gland, which results in a higher head weight in A. mellifera [42, 43]. 176 

Also, Ullah et al. [44] reported that the highest body weight was observed when sufficient 177 
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protein (30 g of soybean flour) was available. However, there were no sufficient differences in 178 

the crude protein content of pollen patties (0.06-0.08%) between the cases of supplementation or 179 

non-supplementation of CSG in this study. Although the recommended amount of protein in 180 

pollen patty has not been identified, it demonstrates that the amount of protein in pollen patty 181 

may be insufficient to increase the weight of honeybees. Therefore, a higher amount of protein in 182 

the pollen patty might be required to increase the body weight of A. mellifera. 183 

Diet consumption 184 

Dietary curcumin consumption implicates the prevention of oxidative stress, which results in 185 

enhanced longevity in A. mellifera [45]. In addition, Avni et al. [46] have demonstrated that 186 

greater consumption of supplements (such as protein and carbohydrates) led to enhanced brood 187 

production and tended toward higher honey yields as well. Regarding diet consumption, several 188 

studies have indicated that diets with additional nutrition supplements were consumed at higher 189 

rates relative to diets without the additional nutrient supplementation [1, 10, 47]. Also, Anvi et al. 190 

[46] have reported that pollen patties consisting only of carbohydrates were more consumed than 191 

those consisting of protein and lipid sources. Similarly, Scheiner et al. [48] have demonstrated 192 

that high sucrose concentrations increase the phagostimulating effects to induce the consumption 193 

of pollen patties. Therefore, we guessed that diet consumption might be increased due to the 194 

supplementation of pollen patty with CSG. However, no significant differences were noted in the 195 

total diet consumption between the supplementation of pollen patties with CSG and those 196 

without it. These results indicate that the NFE (differences among the PC, T1, and the T2 diets: 197 

0.69-1.50%) was insufficient to trigger the phagostimulating effects of increasing the 198 

consumption of pollen patties containing the CSG. 199 

Honey production 200 
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The amount of honey production is correlated with pollen collection and consumption in 201 

honeybees [10]. Insufficient nutrient supplementation causes impaired strength and health in A. 202 

mellifera, which accounts for the decreased foraging activity in terms of collecting pollen into 203 

their colonies [1, 2, 49]. The present results confirmed that the supplementation of pollen patties 204 

with CSG yielded higher honey production compared to that without the supplementation. As 205 

shown in Table 1, pollen patties with the CSG showed relatively higher NFE levels (0.69-1.50%) 206 

to the non-supplementation of CSG. Carbohydrates are considered a major source of fuel for 207 

foraging flights, which refers to the activity of collecting pollen in the honey colonies [47]. Thus, 208 

carbohydrate supplements could provide sufficient nutrients to the colonies and increase honey 209 

production by improving their strength and health. Numerous studies have reported that the 210 

supplementation of pollen patties enriched with carbohydrates increased honey production when 211 

compared to the case of non-supplementation of pollen patties to the colonies [4, 51-53]. 212 

Therefore, increased honey production might be reasonable due to the supplementation of pollen 213 

patty with CSG in A. mellifera. 214 

Brood area 215 

In this study, the supplementation of pollen patties with CSG resulted in improved brood area. 216 

The brood area at day 42 was approximately 10% higher in the T2 supplemented with pollen 217 

patty than in NC without pollen patty supplementation. In addition, the T2 supplemented with 218 

the CSG showed a significantly higher area than the PC. Supplementing A. mellifera with 219 

additives possessing antioxidant properties has been shown to improve their health and 220 

functionality [54-56]. Curcumin, when used in feeding, can reduce oxidative stress through its 221 

antioxidant function [18, 19, 57]. Tawfik et al. [58] have reported that reducing oxidative stress 222 

improves the colony strength and health of honeybees. The size of the brood area is highly 223 

correlated with the number of colonies and populations as it can predict the number of new bee 224 
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larvae born [59]. As a result, improving the brood area could improve the colony strength and, 225 

thus, increase the honey production [40]. Based on the above results, we suggest that 226 

supplementing CSG when feeding pollen supplements to bees can improve their brood area. 227 

Gene expression 228 

In this study, the expression of genes related to antioxidants, Catalase, and SOD1 was 229 

significantly higher in the T1 and T2 supplemented with the CSG. In addition, the treatment 230 

group fed with pollen patties showed significantly higher values than the NC treatment for Trxr1 231 

and SOD2. It shows a similar trend to the results of Alaux’s study [60] analyzing gene 232 

expression after feeding pollen patties to A. mellifera. Feeding pollen patty appears to increase 233 

the expression of antioxidant genes and adding 4% of the CSG appears to further improve it. 234 

Bees can fly up to 7km a day to collect pollen or nectar in nature [61, 62]. Flight requires a lot of 235 

energy, which increases metabolism. Additionally, it triggers the production and accumulation of 236 

reactive oxygen species (ROS) in the body, causing faster aging [63, 64]. ROS causes significant 237 

oxidative stress in A. mellifera [65-67]. A decrease in the health and lifespan of bees can lead to 238 

weakened colony strength and decreased productivity [68]. Rueppell et al. [68] have reported 239 

that delaying nurse-to-forager can increase lifespan by up to 8-fold. In other words, the lifespan 240 

of A. mellifera improves when ROS production decreases due to the absence of flight for pollen 241 

or nectar collection. Catalase, SOD1, SOD2, and Trxr1 measured in this study are considered 242 

powerful enzymes that can remove ROS [69, 70]. Feeding pollen patty and supplementing with 243 

CSG is expected to reduce oxidative stress by increasing the expression of antioxidant enzymes 244 

and improving the health of bees. 245 

246 
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Conclusion 247 

In this study, supplementation of pollen patties with CSG showed improved thorax weight, 248 

honey production, brood area, and antioxidant gene expression. This result indicates that 249 

supplementing pollen patties with a CSG enhanced the performance of A. mellifera. Therefore, 250 

CSG as supplement to pollen patty might be the ideal strategy to improve A. mellifera 251 

performances.  252 
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Tables  457 

Table 1. Composition and chemical analysis of basal pollen patties with curcumin-steviol 

glycoside complex (CSG) 

Items PC T1 T2 

Ingredients (g)    

Defatted soy flour 30 30 30 

Brewer’s Yeast 15 15 15 

Pollen  15 15 15 

Sugar 40 32 24 

CSG 0 8 16 

Sugar syrup 100 100 100 

Total 200 200 200 

Chemical analyzed (%)    

Moisture 12.31 ± 0.27 11.64 ± 0.24 10.85 ± 0.59 

Crude Protein 10.39 ± 0.15 10.34 ± 0.02 10.36 ± 0.15 

Ether Extract 0.08 ± 0.00 0.08 ± 0.00 0.08 ± 0.00 

Crude Fiber 3.83 ± 0.11 3.84 ± 0.14 3.80 ± 0.08 

Crude Ash 6.08 ± 0.31 6.10 ± 0.28 6.11 ± 0.29 

NFE 67.31 ± 0.48 68.00 ± 0.13 68.81 ± 0.72 

Abbreviation: PC, supplementation of basal pollen patty; T1, supplementation of basal pollen 

diets + 0.04% of CSG; T2, supplementation of basal pollen diets + 0.08% of CSG; NFE, 

nitrogen free extract. 
458 
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 459 
Table 2. Primer sequences used for the RT-qPCR analysis with the Catalase, Trxr1, SOD1, 

SOD2 and GAPDH genes  

Gene Primers Sequence (5’-3’) 

Glyceraldehyde-3-phosphate 

dehydrogenase 2 (GAPDH) 

Forward CACATGGAAAATTCAAAGGA 

Reverse AATGACCAGAAGCTTTTTCC 

Thioredoxin reductase 1  

(Trxr1) 

Forward TGTGCTGGATTTTTAAATGG 

Reverse TCCACCCAATGTACAAGAAG 

Superoxide dismutase 1  

(SOD1) 

Forward CGGCTGAAGTATTCATTACG 

Reverse ACGCACACTGCTTTAGTCAT 

Superoxide dismutase 2  

(SOD2) 

Forward GAAAATACCATTGCGATTCA 

Reverse ATCGGGTCGAACATTTTTAT 

Catalase 
Forward CCACTCATTCCTGTTGGTAA 

Reverse GCATCACCGTAAGTGAACAT 
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Table 3. Mean Thorax, head, abdomen, and total body weight of Apis mellifera with 

supplementing different pollen patties with curcumin-steviol glycoside complex (CSG) 

Items (mg) NC PC T1 T2 SEM p-value 

0 days       

Thorax  9.70 9.78 9.39 9.25 0.205 0.244 

Head 4.00 3.70 3.98 3.70 0.148 0.460 

Abdomen 18.20 23.30 16.60 24.90 4.496 0.510 

Total BW 36.05 39.93 33.27 35.05 2.055 0.151 

14 days        

Thorax 9.47 9.58 9.76 9.55 0.242 0.856 

Head 3.74 3.75 4.17 4.00 0.143 0.117 

Abdomen 23.28 24.44 26.20 26.34 2.341 0.758 

Total BW 35.04 36.02 34.00 34.78 1.359 0.771 

28 days        

Thorax 9.36 9.34 8.95 8.89 0.408 0.772 

Head 5.00 5.20 6.00 4.47 0.637 0.406 

Abdomen 30.52 30.76 30.41 32.32 2.554 0.947 

Total BW 36.68 35.20 38.30 37.30 0.003 0.922 

42 days        

Thorax 8.90b 9.00b 9.50ab 9.80a 0.183 0.002 

Head 4.05 4.00 4.17 4.05 0.120 0.782 

Abdomen 19.76 21.25 21.78 21.85 0.727 0.168 

Total BW 36.81 37.91 35.80 35.20 1.547 0.625 

Abbreviation: NC, no supplementation of basal pollen patty; PC, supplementation of basal pollen 

patty; T1, supplementation of basal pollen patty + 0.04% of CSG; T2, supplementation of basal 

pollen patty + 0.08% of CSG; BW, body weight; SEM, standard error means. a-b Means within 

column with different superscripts differ significantly (n=3, p < 0.05). 
 463 
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Table 4. Diet consumption of Apis mellifera with supplementing different pollen patties with 

curcumin-steviol glycoside complex (CSG) 

Items (g) PC T1 T2 SEM p-value 

Daily consumption 28.27 27.61 28.03 1.493 0.952 

Abbreviation: PC, supplementation of basal pollen patty; T1, supplementation of basal pollen 

patty + 0.04% of CSG; T2, supplementation of basal pollen patty + 0.08% of CSG; SEM, 

standard error means. Each value is the mean value of 3 replicates. 
 466 

467 

ACCEPTED



26 

 

 468 

Figure 1. Honey production of Apis mellifera with supplementing different pollen patties 469 

with curcumin-steviol glycoside complex (CSG). All data are presented as mean ± SEM (n=3). 470 
a-c Means within column with different superscripts differ significantly (p < 0.05). NC, no 471 

supplementation of basal pollen patty; PC, supplementation of basal pollen patty; T1, 472 

supplementation of basal pollen patty + 0.04% CSG; T2, supplementation of basal pollen diets + 473 

0.08% CSG. 474 
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 475 

 476 
Figure 2. Brood area of Apis mellifera with supplementing different pollen patties with 477 

curcumin-steviol glycoside complex (CSG). All data are presented as mean ± SEM (n=3). a-c 478 

Means within column with different superscripts differ significantly (p < 0.05). NC, no 479 

supplementation of basal pollen patty; PC, supplementation of basal pollen patty; T1, 480 

supplementation of basal pollen patty + 0.04% CSG; T2, supplementation of basal pollen patty + 481 

0.08% CSG. 482 
 483 
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 486 
Figure 3. Relative gene expression of Apis mellifera with supplementing different pollen 487 

patties with curcumin-steviol glycoside complex (CSG). All data are presented as mean ± 488 

SEM (n=3). a-c Means within column with different superscripts differ significantly (p < 0.05). 489 

NC, no supplementation of basal pollen patty; PC, supplementation of basal pollen patty; T1, 490 

supplementation of basal pollen patty + 0.04% CSG; T2, supplementation of basal pollen patty + 491 

0.08% CSG; Trxr 1, Thioredoxin reductase 1; SOD 1, Superoxide dismutase 1; SOD 2, 492 

Superoxide dismutase 2. 493 
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