JAST (Journal of Animal Science and Technology) TITLE PAGE Upload this completed form to website with submission

ARTICLE INFORMATION	Fill in information in each box below
Article Type	Research article
Article Title (within 20 words without abbreviations)	Effects of citric acid and heat-treated soybean meal on rumen fermentation characteristics, methane emissions, and microbiota: an <i>in vitro</i> study
Running Title (within 10 words)	Effects of citric acid and heat-treated soybean meal in rumen
Author	Daekyum Yoo1#, Joonpyo Oh2#, Siwoo Jeong1, Jakyeom Seo1
Affiliation	1 Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea 2 Cargill Animal Nutrition Korea, Seongnam 13630, Republic of Korea
ORCID (for more information, please visit https://orcid.org)	Daekyum Yoo (https://orcid.org/0000-0002-6430-9539) Joonpyo Oh (https://orcid.org/0000-0002-1906-5520) Siwoo Jeong (https://orcid.org/0009-0009-7062-9836) Jakyeom Seo (https://orcid.org/0000-0002-9176-5206)
Competing interests	No potential conflict of interest relevant to this article was reported.
Funding sources State funding sources (grants, funding sources, equipment, and supplies). Include name and number of grant if available.	This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. 2022R1A2C1006958).
Acknowledgements	Not applicable.
Availability of data and material	Upon reasonable request, the datasets of this study can be available from the corresponding author.
Authors' contributions Please specify the authors' role using this form.	Conceptualization: Yoo DK, Oh JP, Jeong SW, Seo JK. Data curation: Yoo DK, Oh JP, Seo JK. Formal analysis: Yoo DK, Oh JP, Jeong SW. Methodology: Yoo DK, Jeong SW, Seo JK. Software: Oh JP, Jeong SW. Validation: Yoo DK, Oh JP, Seo JK. Investigation: Yoo DK, Oh JP, Jeong SW, Seo JK. Writing - original draft: Yoo DK, Oh JP. Writing - review & editing: Jeong SW, Seo JK.
Ethics approval and consent to participate	The protocols for animal use in this study were reviewed and approved by the Animal Research Ethics Committee of Pusan University (PNU-2022-3168).

CORRESPONDING AUTHOR CONTACT INFORMATION

For the corresponding author (responsible for correspondence, proofreading, and reprints)	Fill in information in each box below
First name, middle initial, last name	Jakyeom Seo
Email address – this is where your proofs will be sent	jseo81@pusan.ac.kr
Secondary Email address	jakyeomseo@gmail.com

Address	Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
Cell phone number	+82-10-7202-3506
Office phone number	+82-55-350-5513
Fax number	+82-55-350-5519

1 Abstract

2

3 This study aimed to assess the impact of citric acid (CA) and heat-treated soybean meal 4 (SBM) on rumen fermentation characteristics, methane production, and microbiota through an in vitro 5 experiment. Untreated SBM, heat-treated SBM (HSBM), CA-treated SBM (CSBM), and SBM treated 6 with a combination of heat and CA (HCSBM). Parameters assessed in in vitro were gas production, 7 methane emissions, dry matter degradability (IVDMD), crude protein degradability (IVCPD), 8 ammonia nitrogen (NH₃-N), microbial crude protein (MCP), volatile fatty acids (VFA), pH, and 9 microbiota composition. The HCSBM exhibited the lowest gas production and theoretical maximum 10 gas production (p < 0.01). Methane production (%) was significantly reduced in both CSBM and 11 HCSBM (p < 0.01), with the lowest methane emissions (mL/g dry matter, DM) observed in HCSBM 12 (p < 0.01). The IVCPD was significantly reduced in both the HSBM and HCSBM groups (p < 0.01). HCSBM had the lowest NH₃-N and MCP concentrations (p < 0.01). Total VFA production was the 13 14 lowest in HCSBM (p < 0.01), with a higher proportion of acetate and lower proportions of propionate 15 (p < 0.01). HCSBM reduced the enrichment of Thermoplasmatota compared to HSBM (p < 0.05) and 16 decreased the enrichment of the coenzyme M biosynthesis pathway in the microbial functional 17 profiles compared to SBM and CSBM (p < 0.05). Additionally, an increase in fiber-degrading bacteria, 18 particularly Fibrobacterota, was observed in HCSBM (p < 0.05). These findings suggest that the 19 combination of heat and CA treatment of SBM may effectively reduce ruminal protein degradation 20 and methane emissions. Further in vivo studies are necessary to validate these results and assess their 21 practical application in ruminant nutrition. 22

23 Keywords: Soybean meal, Citric acid, Heat, Methane production, Ruminal protein degradation

25 Introduction

26

Animal nutritionists are actively exploring various strategies to mitigate the environmental impact of animal production. In this context, it is notable that ruminants exhibit lower nitrogen utilization efficiency than non-ruminants. Approximately 70-75% of the nitrogen ingested by ruminants is excreted in manure [1]. The excreted nitrogen can lead to environmental problems, including the production of nitrous oxide, a significant greenhouse gas, and soil eutrophication [2-4].

32 Rumen-protected protein (RPP) is a protein-rich ingredient that is artificially treated using 33 physical and chemical methods to increase the proportion of ruminal undegradable protein (RUP). 34 Recent studies have focused on evaluating combinations of physical and chemical treatments for the 35 development of RPP. Rigon et al. [5] and Molosse et al. [6] reported that combining heat treatment 36 with xylose increased the RUP content in peanut and cottonseed meals. Díaz-Royón et al. [7] 37 suggested that applying malic acid or orthophosphoric acid in combination with heat treatment 38 decreased rumen degradation of sunflower meal and spring peas. Venegas et al. [1] observed that the 39 combined application of malic acid and heat treatment to sunflower seeds and sunflower meal did not 40 negatively affect rumen fermentation and was effective in reducing ammonia-nitrogen (NH₃-N) 41 concentrations. Although treating protein feed with a combination of heat and sugars or heat and acid 42 solutions can effectively inhibit microbial degradation in the rumen, the efficacy of these treatments 43 varies depending on several factors, such as the type of protein feed, type and concentration of sugars 44 and acids, and the intensity and duration of heat [1, 5, 6].

45 In this study, citric acid (CA) and heating were applied to soybean meal (SBM) since CA 46 offers the advantage of being relatively cheaper compared to commonly used organic acids such as 47 malic acid and orthophosphoric acid. CA has been suggested to act as a catalyst for rumen microbial 48 metabolism when used as a feed additive [8]. Packett and Butcher [9] reported that adding 2% sodium 49 citrate to lamb feed increased weight gain by 47% and feed efficiency by 23%. Additionally, Kazemi-50 Bonchenari et al. [10] found that treating barley grains with CA improved fiber digestibility in total 51 mixed rations, and enhanced weight gain and feed efficiency in Holstein male calves. Sun et al. [11] 52 proposed that citrate may have the potential to mitigate methane emissions. However, our literature 53 investigation estimated that no studies have evaluated methane production following CA 54 supplementation in *in vitro* or *in vivo* experiments. In contrast, Vanegas et al. [1] reported that a 55 combined heat and malic acid treatment of sunflower seeds and sunflower meal was effective in 56 reducing methane emissions. SBM was selected as the protein source because it is a major protein 57 ingredient in South Korea [12] and has a better amino acid composition than the other sources used in 58 previous RPP studies. Therefore, this study aimed to evaluate the effects of CA and heat-treated SBM 59 on rumen fermentation characteristics, methane production, and microbiota using *in vitro* experiments.

61 Materials and Methods

62 Protocols for animal use in this study were reviewed and approved by the Animal Research Ethics
63 Committee of Pusan University (PNU-2022-3168).

64

65 Sample preparation and chemical analysis

66 The SBM and CA used for the *in vitro* experiments were provided by GeneBiotech Co., Ltd. 67 (Gongju, Korea). The experimental treatments included untreated SBM, heat-treated SBM (HSBM), 68 CA-treated SBM (CSBM), and SBM treated with both heat and CA (HCSBM). HSBM was produced 69 by heat-treating 100 g of SBM at 160°C for 1 h using a roaster (FEC-006, Biotech, Gimpo, Korea). 70 CSBM was prepared by mixing 100 g of SBM with 0.4 mL of 1.5 mol L⁻¹ CA solution per gram of SBM. HCSBM was formulated by adding 0.4 mL of 1.5 mol L⁻¹ CA solution per gram to 100 g of 71 72 SBM, followed by heat treatment at 160°C for 1 h using a roaster. All experimental feeds were dried 73 at 60°C for 72 h and then ground using a cyclone mill (Foss Tecator Cyclotec 1093, Foss, Hillerød, 74 Denmark) equipped with a 1 mm screen. Crude protein (CP, method #990.03), ether extract (EE, 75 method #920.39), and ash (method #942.05) were analyzed according to AOAC standards [13]. 76 Neutral detergent fiber (NDF) and lignin contents were determined using the method described by 77 Van Soest et al. [14]. Gross energy was measured using a Parr 6400 Automatic Isoperibol Calorimeter 78 (Parr Instrument Co., IL, USA) in accordance with the manufacturer's guidelines.

79

80 Donor cattle and rumen fluid collection

81 Rumen fluid was collected from two cannulated Holstein steers (body weight: 650 ± 12.3 kg). 82 The steers were fed a diet consisting of commercial concentrate (Famsco Co., Ltd., Chilgok, Korea) 83 and oat hay in a 6:4 ratio twice daily. Water and mineral blocks were provided ad libitum. Rumen 84 fluids were collected from various regions of the rumen 1 h before the morning feeding. The collected 85 rumen fluid was immediately stored in a 4 L thermos bottle and transported to the laboratory within 86 30 min. It was then filtered through a mesh filter with a pore size of 250 µm while maintaining a 87 temperature of 39°C, diluted at a 1:4 ratio with *in vitro* buffer [15], and bubbled with O₂-free CO₂ to 88 maintain strictly anaerobic conditions until inoculation.

89

90 In vitro rumen fermentation

We conducted an *in vitro* batch culture experiment in two consecutive runs. Each experiment included three blanks, and each treatment was performed with four replicates. The experimental substrates (DM, 1.0 g) were placed in 250 mL serum bottles. While flushing with O₂ -free CO₂ gas, 100 mL of buffered rumen fluid was allocated into 250 mL serum bottles that contained the substrates. 95 The bottles were completely sealed using butyl rubber stoppers and aluminum caps, then incubated at

39°C in a rotary shaker (JSSI-300T, JS Research, Gongju, Korea) at 80 rpm for 24 h.

- 96
- 97

98 Experimental procedures, sample collection, and analysis

99 Gas production was measured at 3, 6, 9, 12, and 24 h using a pressure transducer 100 (XP01KPS1C1G; Honeywell Inc., Charlotte, NC, USA) as described by Theodorou et al. [16]. After 101 each measurement, all headspace gas was collected in evacuated gas sampling bags (Best Pack Co., 102 Ltd., Seoul, Korea) to prevent the inhibition of microbial activity due to headspace gas pressure and 103 for methane analysis. The gas production profiles obtained during incubation were analyzed using a 104 simple exponential model [17] to determine the fractional rate constant for gas production (K_s) and 105 theoretical maximum gas production (V_{max}) . The concentrations of methane after 24 h were analyzed 106 using a gas chromatograph (YL6500 GC System, Young-In Chromass Co., Ltd., Anyang, Korea) 107 equipped with a thermal conductivity detector and packed columns (3.05 m \times 0.125 mm \times 2 mm, 108 Carboxen-1000, Agilent Technologies Inc., CA, USA). Helium was used as a carrier gas at a flow rate 109 of 30 mL/min. The injector operated at room temperature, and the detector temperature was set to 110 130°C. The column oven was programmed to ramp at a rate of 15°C/min from an initial temperature of 60°C to a final temperature of 180°C, and the final temperature was maintained for 2 min. After 24 111 112 h of incubation, the serum bottles were opened, and the feed substrates were filtered using nylon bags 113 $(10 \times 14 \text{ cm})$ with a pore size of 22 μ m (Supply Filter Tech Co., Ltd., Ansan, Korea). The nylon bags 114 were dried at 60°C for 72 h to determine DM degradability (IVDMD). The CP content of the weighed 115 bags was determined using the Kjeldahl method to assess CP degradability (IVCPD). Approximately 116 50 mL of the cultures were centrifuged at 3500 rpm for 20 min at 4°C. The supernatant was then 117 separated into aliquots for the analysis of pH, volatile fatty acids (VFA), and NH₃-N. The pH was 118 measured using a pH meter (FP20; Mettler Toledo, Columbus, OH, USA). Pretreatment and analysis 119 of VFA and NH₃-N were conducted according to the methods described by Yoo et al. [18]. MCP 120 analysis was conducted with slight modifications to the method described by Makkar et al. [19]. 121 Briefly, 10 mL of liquid culture was centrifuged at $500 \times g$ for 5 min at 4°C. The resulting supernatant 122 was centrifuged at 20,000 g for 15 min to obtain a pellet. The pellet was resuspended in 10 mL $1\times$ 123 phosphate-buffered saline solution and centrifuged at $20,000 \times g$ for 15 min. The washing step was 124 repeated twice. The final pellet was analyzed using the Kjeldahl method. Microbial DNA was 125 sampled for the second experiment. A 1.8 mL sample of rumen fluid was placed into a 2 mL 126 collection tube and centrifuged at $20,000 \times g$ for 20 min at 4°C. After centrifugation, the supernatant was discarded, and the remaining pellet was stored at -80°C until microbial DNA extraction. 127

128

129 DNA extraction, 16S rRNA gene sequencing, and data processing

Total DNA was extracted from the pellet according to the manufacturer's protocol (QiAamp Fast DNA Stool Kit, Hilden, Germany). Following DNA extraction, quantity and quality were assessed using a NanoDrop spectrophotometer (ND-200, Allsheng, Hangzhou, China). The purified DNA was stored at -20°C until used for 16S rRNA gene sequencing.

134 The sequencing libraries were generated using a universal primer set with Illumina adapter 135 overhang sequences, targeting the V3 and V4 regions of the 16S rRNA gene (V3-F: 5'-136 CCTACGGGNGGCWGCAG-3' and V4-R: 5'-GACTACHVGGGTATCTAATCC-3') as described 137 by Herlemann et al. [20]. Paired-end sequencing (2×300 bp) was performed by Macrogen (Macrogen 138 Inc., Seoul, Korea) on the MiSeqTM platform. Barcode sequences were trimmed using Cutadapt 139 (Martin, 2011, version 4.1). Amplicon sequences were processed using Quantitative Insights into 140 Microbial Ecology 2 (QIIME2, version 24.02) [21]. Initially, the Divisive Amplicon Denoising 141 Algorithm 2 (DADA2) plugin was used to remove primer sequences, filter out low-quality reads (Q 142 score < 25), merge paired-end reads, and eliminate chimeric sequences [22]. The amplicon sequence 143 variants (ASVs) were classified taxonomically with the Silva 16S rRNA gene database [23], version 144 SSU138.1. Several ASVs, including those that were taxonomically unassigned, eukaryotes, 145 mitochondria, and chloroplasts, were excluded from the analysis. The alpha diversity of each sample 146 was evaluated using the Shannon index, Simpson index, Faith's phylogenetic diversity, observed 147 ASVs, and evenness based on rarefied ASV tables with 28,819 randomly selected ASVs per sample. 148 Good's coverage was greater than 99.7% for all samples. Principal coordinate analysis (PCoA) was 149 conducted using unweighted and weighted UniFrac distance matrices to evaluate the overall 150 differences in ruminal microbiota among various treatments. Visualizations were performed using the 151 Plotly package in R (version 4.3.3). Functional profiles derived from 16S rRNA gene sequences were 152 predicted using ASVs and the corresponding biological observation matrix (BIOM) table through 153 phylogenetic investigation of communities by reconstruction of unobserved state 2 (PICRUSt2, 154 version 2.5.2) [24]. The updated Kyoto Encyclopedia of Genes and Genomes (KEGG) was used to 155 infer KEGG orthologs and the KEGG modules were mapped using the hierarchical database. 156 Principal component analysis (PCA) was conducted to evaluate the overall variance in the predicted 157 KEGG orthologs across treatments, utilizing Bray-Curtis dissimilarities for comparison. The PCA plot 158 was generated and visualized using the ggfortify package in R [25].

159

160 Statistical Analysis

161 Normality of the data distribution was verified using the Shapiro-Wilk test via the
162 UNIVARIATE procedure in SAS 9.4 (SAS Institute Inc., Cary, NC, USA). Data on gas production,
163 methane emissions, and fermentation characteristics were analyzed using the R software (version
164 4.3.3). A two-way analysis of variance (ANOVA) was employed to evaluate the main effects of heat

165 treatment, CA treatment, their interactions, and experimental runs as blocking factors. The statistical 166 model used was as follows:

- 167
- 168

 $Y_{ijk} = \mu + H_i + C_j + (H \times C)_{ij} + B_k + \varepsilon_{ijk}$

169 Where Y_{ijk} is the response variable, μ is the overall mean, H_i is the fixed effect of heat 170 treatment (i = 1, 2), C_i is the fixed effect of CA treatment (j = 1, 2), $(H \times C)_{ij}$ is the interaction effect of 171 heat and CA treatment, B_k is the random effect of the block (experimental run) (k = 1, 2), and ε_{iik} is the 172 random error term. When significant effects were observed, Tukey's post-hoc test was used to 173 compare the differences between treatments. Alpha diversity metrics that followed a normal 174 distribution were analyzed using QIIME2. To assess the statistical differences in the PCoA and PCA 175 results among treatments, a permutational multivariate analysis of variance (PERMANOVA) was 176 conducted with 9,999 random permutations in both QIIME2 and R. Analysis of the composition of 177 microbiomes with bias correction (ANCOM-BC) was utilized to identify differentially predominant 178 microbiota (phyla and genera) and predict microbial functions across treatments, employing 1,000 179 maximum iterations and excluding structural zeros [26]. A significance threshold was set at P < 0.05, 180 with trends noted for $0.05 \le p < 0.10$.

181

183 **Results**

184

185 Chemical composition

The results of the chemical composition analysis of each treatment are presented in Table 1. The DM content increased in the heat-treated groups (HSBM: 99.5%, HCSBM: 97.4%) compared to the SBM (90.3%). The CP content in the CA-treated groups (CSBM: 47.7%DM, HCSBM: 47.9%DM) was lower compared to the SBM (51.6%DM). The NDF content was higher in the heattreated groups (HSBM: 16.7%DM, HCSBM: 13.4%DM) compared to the SBM (8.51%DM). Similarly, lignin content was also greater in the heat-treated groups (HSBM: 2.43%DM, HCSBM: 2.03%DM) than in the SBM (0.80%DM).

193

194 Gas production, gas parameters, and methane emission

The results for gas production, gas parameters, and methane emissions are presented in Table 2. The 3 h gas production was significantly higher in the CSBM (p < 0.01). At 6 h, gas production was significantly lower in the heat-treated groups (p < 0.01). The interaction effect of heat and CA resulted in the lowest gas production and V_{max} in the HCSBM between 9 and 24 h (p < 0.01, respectively). K_g was the lowest in the groups treated with CA (p < 0.01). Methane production (%) was the lowest in the groups treated with CA (p < 0.01), and HCSBM showed the lowest methane production (mL/g DM) (p < 0.01).

202

203 In vitro rumen fermentation characteristics

204 Results for *in vitro* ruminal fermentation characteristics are shown in Table 3. IVDMD and 205 IVCPD were lower in groups of heat treatment (p < 0.01). The highest pH was observed in SBM (p < 0.01). 206 0.01). The NH₃-N concentration was significantly lower in the HCSBM (p < 0.01), although no 207 significant interaction was observed. As a result of the interaction effect, MCP and total VFA 208 production, as well as the molar proportions of propionate and butyrate, were the lowest in the 209 HCSBM (p < 0.01, respectively), while the molar proportion of acetate was the highest (p < 0.01). 210 The molar proportions of iso-butyrate and iso-valerate were the lowest in the heat-treated groups (p < p211 0.01, respectively), while the valerate levels were significantly lower in the CA-treated groups (p < p212 0.01).

213 Comparison of overall differences in rumen microbiota

The rarefaction curves based on the alpha diversity indices tended to plateau, indicating that the sequencing depth adequately captured the overall ASVs for each treatment (Supplementary Fig 1). In the rumen microbiota, the evenness index was significantly lower in HCSBM than in SBM, HSBM, or CSBM (Fig 1, p < 0.05). The Shannon and Simpson indices were significantly higher in the HSBM 218 group than in the SBM, CSBM, and HCSBM groups (Fig 1, p < 0.05). Overall differences in rumen 219 microbiota were estimated using PCoA based on UniFrac distance matrices (Fig 2). Regardless of the 220 UniFrac matrix type, SBM and CSBM did not separate distinctly (pairwise comparison, Fig 2; (A) 221 unweighted UniFrac distance, *Q*-value = 0.170; (B) weighted UniFrac distance, *Q*-value = 0.105). 222 However, a significant separation was observed among the SBM, HSBM, and HCSBM groups in the 223 overall rumen microbiota (Fig 2; (A) unweighted UniFrac distance, p < 0.05; (B) weighted UniFrac 224 distance, p < 0.05).

- 225
- 226

Compositional profiles of the rumen microbiota and taxonomic differences

Predominant rumen microbiota at the (A) phylum and (B) genus levels were presented only for taxa with an occurrence rate of \geq 30% and a relative abundance of \geq 0.5% in at least one treatment (Fig 3). The major rumen phyla were primarily assigned to five taxonomic groups (Fig 3A): Bacteroidetes (71.6%), Firmicutes (21.4%), Spirochaetota (3.4%), and Verrucomicrobiota (0.9%). At the genus level, Bacteroidales_F082 and *Prevotella* were dominant, accounting for at least 20.5% and 18.6% of the total rumen microbiota, respectively, regardless of the treatment. Approximately 89.4% of rumen microbiota was assigned to 24 major genera (Fig 3B).

234 ANCOM-BC analysis was performed on rumen samples to identify differentially abundant 235 taxa across treatments, as shown at the phylum level in Fig 4 and the genus level in Fig 5. At the 236 phylum level, no significant differences in enriched taxa were observed among the SBM, HSBM, and 237 CSBM groups. Fibrobacterota was significantly enriched in HCSBM. At the genus level, the 238 Prevotellaceae_YAB2003_group was enriched in both the SBM and CSBM groups. Butyrivibrio and 239 Succinivibrio were more abundant in the SBM. Oribacterium was more enriched in CSBM. 240 Streptococcus showed more absolute abundance in HSBM. Fibrobacter showed a tendency toward 241 increased absolute abundance in HCSBM.

242

243 Differences in the predicted functional profiles

244 To compare the differences in microbial functional profiles, we estimated 16S rRNA gene 245 sequencing data using PICRUSt2. Significant differences were detected in the overall distribution of 246 microbial functions at the KEGG ortholog level (Fig 6A; PERMANOVA, $R^2 = 0.704$, p < 0.001). 247 While the SBM cluster was not significantly different from the CSBM cluster, it showed distinct 248 differences from the HSBM and HCSBM clusters (Fig 6A, SBM vs. HSBM, Pseudo-F = 10.559, p < 10.559249 0.05; SBM vs. HCSBM, Pseudo-F = 5.377, p < 0.05). The clusters of HSBM, CSBM, and HCSBM 250 showed distinct differences (Fig 6A, HSBM vs. CSBM, Pseudo-F = 5.927, p < 0.05; HSBM vs. 251 HCSBM, Pseudo-F = 30.358, p < 0.05; CSBM vs. HCSBM, Pseudo-F = 12.524, p < 0.05). In 252 pairwise comparisons, the amino acid metabolism module (M00134: Polyamine biosynthesis, arginine 253 => ornithine => putrescine) and carbohydrate metabolism module (M00580: Pentose phosphate

254 pathway, archaea, fructose $6P \Rightarrow$ ribose 5P) were notably enriched in the HSBM treatment compared 255 to the SBM treatment (Fig. 6B, adjusted p < 0.05, respectively). No significant differences were 256 observed between the SBM and CSBM groups. In the HCSBM, two amino acid metabolism modules 257 (M00533: Homoprotocatechuate degradation, homoprotocatechuate => 2-oxohept-3-enedioate; 258 M00879: Arginine succinvltransferase pathway, arginine => glutamate) were enriched compared to 259 the SBM (Fig. 6D, adjusted p < 0.05, respectively). Conversely, the energy metabolism module 260 (M00358: Coenzyme M biosynthesis) was enriched in the SBM (Fig. 6D, adjusted p < 0.05). The 261 carbohydrate metabolism module (M00580: Pentose phosphate pathway, archaea, fructose 6P => 262 ribose 5P) was more enriched in the HSBM than in the CSBM (Fig. 6E, adjusted p < 0.05), whereas the lipid metabolism module (M00090: Phosphatidylcholine (PC) biosynthesis, choline => PC) was 263 264 more enriched in the CSBM (Fig. 6E, adjusted p < 0.01). The lipid metabolism module (M00090: 265 Phosphatidylcholine (PC) biosynthesis, choline \Rightarrow PC) and three energy metabolism modules 266 (M00154: Cytochrome c oxidase; M00155: Cytochrome c oxidase, prokaryotes; M00358: Coenzyme 267 M biosynthesis) were significantly enriched in CSBM compared to HCSBM (Fig. 6G, adjusted p < p268 0.05, respectively).

269

271 **Discussion**

272

273 Heat treatment of protein sources has been shown to enhance Maillard reactions or non-enzymatic 274 browning, leading to an increased content of RUP [27]. Similarly, acid treatment has been suggested 275 to induce structural alterations in proteins, potentially improving protection against ruminal 276 degradation [28, 29]. Furthermore, when heat and acid treatments are applied together, the protective 277 effect against ruminal degradation is greater than with either treatment alone. Previous studies 278 evaluating RPP using a combination of heat and organic acids have primarily focused on applying 279 heat and malic acid or orthophosphoric acid [1, 7, 29-32]. The efficacy of these treatments can vary 280 depending on several factors, including the type of acid and heating method used. In this study, we 281 employed a combination of CA and heat to specifically target SBM. We hypothesized that treatment 282 of SBM with heat and CA would reduce ruminal degradation and lower methane emissions. Wright 283 [33] reported that ruminal microbes rapidly metabolize CA to CO₂ and acetate. In our study, the 284 highest gas production observed in the CSBM during the initial 3 h was likely due to the rapid 285 degradation of CA. Additionally, Kg was the highest in CSBM and HCSBM, which may be attributed 286 to the effect of CA supplementation. In vitro fermentation experiments measuring gas production 287 have been widely used to evaluate feed degradability and rumen fermentation kinetics [34, 35]. After 288 6 h, both HSBM and HCSBM exhibited minimal gas production. However, as fermentation 289 progressed beyond 9 h, HCSBM consistently demonstrated the lowest gas production. Furthermore, 290 the V_{max} was significantly lower in the HCSBM group. These findings indicate that HCSBM provided 291 the most effective protection against ruminal degradation among all treatments.

292 Methane production (%) was the lowest in CSBM and HCSBM. Despite these observed 293 differences in methane production (%), our investigation into microbial ecology revealed no 294 significant variations in the community structure between SBM and CSBM at the phylum and genus 295 levels. Similarly, the microbial functional profiles did not differ between the SBM and CSBM. Wu et 296 al. [36] suggested that coenzyme M plays a critical role in the archaeal methanogenic pathways as a 297 cofactor required for the final step of methanogenesis. Notably, the enrichment of methane 298 metabolism (M00358: Coenzyme M biosynthesis) was significantly lower in the HCSBM than in both 299 the SBM and CSBM. The significant reduction of the M00358 module (Coenzyme M biosynthesis) in 300 the HCSBM indicates that the combination of heat and CA treatments may inhibit methanogenic 301 activity by limiting the availability of this crucial cofactor. Furthermore, the HCSBM group showed 302 lower methane production (%) than the HSBM group, which was accompanied by a significant 303 reduction in the absolute abundance of Thermoplasmatota at the phylum level. Thermoplasmatota, a 304 phylum primarily represented in the archaeal community, is still not fully understood [37]. This 305 reduction in key methanogenic pathways suggests that HCSBM has the potential to modulate

306 microbial metabolism, thereby reducing methane production However, given that there was no 307 significant difference in methane production (%) between the CSBM and HCSBM groups, further 308 research is required to elucidate the effect of CA supplementation on methane reduction. In particular, 309 mechanistic studies are needed to investigate how heat treatment and CA interact to influence 310 coenzyme M biosynthesis and other key methanogenic pathways. The lowest methane emission 311 (mL/g DM) observed in the HCSBM may be due to a reduction in methane production (%) and 312 decreased total gas production resulting from inhibited ruminal degradation of the substrate. The 313 IVCPD was significantly lower in the HSBM and HCSBM groups, with no significant interaction 314 effects observed. Heat treatment is the most effective physical protection method because it produces 315 amino-sugar complexes via the Maillard reaction, resulting in resistance to microbial enzymatic 316 hydrolysis [27]. Additionally, Lin and Kung [27] found that roasting soybeans at temperatures 317 between 100°C and 160°C yielded the highest RUP content at 160°C. Consequently, it is believed that 318 the structural changes in proteins induced by heat treatment reduce their degradation in the rumen. 319 The concentration of NH₃-N was positively correlated with IVCPD. Based on the IVCPD results, we 320 predicted that the NH₃-N concentrations would be similar in the HSBM and HCSBM. However, the 321 NH₃-N concentration was the lowest in the HCSBM. According to Russell et al. [38], fibrolytic 322 bacteria rely exclusively on NH₃-N as their nitrogen source. In our study, the absolute abundance of 323 Fibrobacter was higher in HCSBM than in HSBM. Thus, the lower NH₃-N concentration in HCSBM 324 might be due to the increased utilization of NH₃-N by *Fibrobacter*.

325 MCP was the lowest in the HCSBM group. When nitrogen is sufficiently available, the 326 fermentation of carbohydrates in the rumen is the primary factor influencing MCP synthesis 327 efficiency [39]. Zhang et al. [40] noted that a higher content of non-structural carbohydrates in the 328 feed enhanced total VFA production and MCP synthesis. Similarly, Berthiaume et al. [41] confirmed 329 that increasing nonstructural carbohydrate levels in alfalfa improved microbial nitrogen synthesis in 330 the rumen. Total VFA production, primarily resulting from the microbial fermentation of 331 carbohydrates [42], was significantly lower in HCSBM, with a particularly marked reduction in the 332 proportion of propionate generated by the microbial degradation of non-structural carbohydrates [43]. 333 Therefore, the lower MCP might be due to the reduced non-structural carbohydrate content following 334 the combined heat and CA treatment. The proportion of acetate was the highest in HCSBM. Previous 335 studies have noted that CA supplementation increases acetate production [8, 10]. HCSBM contained 336 a significantly higher proportion of acetate than CSBM. This observation may be linked to the 337 significant enrichment of Fibrobacterota in the HCSBM. Fibrobacterota is a key bacterial phylum 338 responsible for cellulose degradation and primarily produces acetate and succinate as the main 339 fermentation products [44]. Therefore, the enriched Fibrobacterota in HCSBM may have promoted 340 fiber degradation, potentially contributing to the increased proportion of acetate production. 341 Nevertheless, because this study did not evaluate fiber degradability, further investigation is required

to establish a connection between fiber degradation and acetate production. Isobutyrate and isovalerate, classified as branched-chain VFA, are produced through the deamination of branchedchain amino acids and are considered indicators of protein fermentation [45]. HCSBM and HSBM exhibited the lowest CP degradation. Similarly, the proportions of isobutyrate and isovalerate production were the lowest between the two treatments. Moreover, no differences in amino acid metabolism were observed between HCSBM and HSBM.

348 Overall, our findings suggest that HCSBM reduces methane emissions by decreasing the 349 enrichment of the methane metabolism pathway (M00358: Coenzyme M biosynthesis) and lowering 350 the absolute abundance of the phylum Thermoplasmatota. Although HCSBM and HSBM exhibited 351 similar IVCPD and proportions of branched-chain VFA production, the increased abundance of fiber-352 degrading bacteria in HCSBM may have contributed to the lowest observed NH₃-N concentration. In 353 conclusion, treating SBM with a combination of heat and CA showed the potential to reduce ruminal 354 protein degradation and methane emissions, suggesting the need for additional in vivo studies to 355 confirm these results.

357 Acknowledgments

358 Not applicable.

359

361 **References**

- Vanegas JL, Carro MD, Alvir MR, González J. Protection of sunflower seed and sunflower meal protein with malic acid and heat: Effects on in vitro ruminal fermentation and methane production. J Sci Food Agric. 2017;97(1):350-6. https://doi.org/10.1002/jsfa.7743
- Haro A, de Evan T, De La Fuente Vázquez J, Díaz MT, González Cano J, Carro MD.
 Effect of a Diet Supplemented with Malic Acid–Heat (MAH) Treated Sunflower on
 Carcass Characteristics, Meat Composition and Fatty Acids Profile in Growing Lambs.
 Animals. 2020;10(3):487. https://doi.org/10.3390/ani10030487
- 370 3. O'Hara E, Neves AL, Song Y, Guan LL. The role of the gut microbiome in cattle
 371 production and health: driver or passenger? Annu Rev Anim Biosci. 2020;8:199-220.
 372 https://doi.org/10.1146/annurev-animal-021419-083952
- 4. Park SH, Lee BR, Kim TH. Urease and nitrification inhibitors with pig slurry effects on ammonia and nitrous oxide emissions, nitrate leaching, and nitrogen use efficiency in perennial ryegrass sward. Anim Biosci. 2021;34(12):2023-33.
 https://doi.org/10.5713/ab.21.0046
- 377 5. Rigon F, Pereira DA, Loregian KE, Magnani E, Marcondes MI, Branco RH, et al. Use
 378 of Heating Methods and Xylose to Increase Rumen Undegradable Protein of Alternative
 379 Protein Sources: 1) Peanut Meal. Animals. 2022;13(1):23.
 380 https://doi.org/10.3390/ani13010023
- Molosse VL, Pereira DA, Rigon F, Loregian KE, Magnani E, Marcondes MI, et al. Use
 of Heating Methods and Xylose to Increase Rumen Undegradable Protein of Alternative
 Protein Sources: 2) Cottonseed Meal. Animals. 2022;13(1):41.
 https://doi.org/10.3390/ani13010041
- Díaz-Royón F, Arroyo J, Sánchez-Yélamo MD, González J. Sunflower meal and spring
 pea ruminal degradation protection using malic acid or orthophosphoric acid-heat
 treatments. Anim Prod Sci. 2015;56(12):2029-38. https://doi.org/10.1071/AN14669
- Wang C, Liu Q, Meng J, Yang WZ, Yang XM, He DC, et al. Effects of citric acid 388 8. 389 supplementation on rumen fermentation, urinary excretion of purine derivatives and feed 390 digestibility Sci Food Agric. 2009;89(13):2302-7. in steers. J https://doi.org/10.1002/jsfa.3724 391
- Packett L, Fordham J. Utilization of citric acid by rumen microorganisms. J Anim Sci. 1965;24(2):488-93. https://doi.org/10.2527/jas1965.242488x

- Kazemi-Bonchenari M, Salem A, López S. Influence of barley grain particle size and treatment with citric acid on digestibility, ruminal fermentation and microbial protein synthesis in Holstein calves. Animal. 2017;11(8):1295-302.
 https://doi.org/10.1017/S1751731116002810
- Sun W, Mitsumori M, Takenaka A. The detection of possible sensor histidine kinases
 regulating citrate/malate metabolism from the bovine rumen microbial ecosystem. Lett
 Appl Microbiol. 2008;47(5):462-6. https://doi.org/10.1111/j.1472-765X.2008.02460.x
- Tsai CF, Lin LJ, Wang CH, Tsai CS, Chang SC, Lee TT. Effects of fermented soybean meal with Bacillus velezensis, Lactobacillus spp. or their combination on broiler performance, gut antioxidant activity and microflora. Anim Biosci. 2022;35(12):1892-903. https://doi.org/10.5713/ab.21.0529
- 405 13. AOAC C. Official methods of analysis of the Association of Analytical Chemists
 406 International. Official Methods: Gaithersburg, MD, USA. 2005.
- 407 14. Van Soest Pv, Robertson JB, Lewis B. Methods for dietary fiber, neutral detergent fiber,
 408 and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci.
 409 1991;74(10):3583-97. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
- 410 15. Goering HK, Van Soest PJ. Forage fiber analyses (apparatus, reagents, procedures, and
 411 some applications): US Agricultural Research Service; 1970.
- Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol. 1994;48(3-4):185-97.
 https://doi.org/10.1016/0377-8401(94)90171-6
- 416
 17. Schofield P, Pitt R, Pell A. Kinetics of fiber digestion from in vitro gas production. J
 417 Anim Sci. 1994;72(11):2980-91. https://doi.org/10.2527/1994.72112980x
- 418 18. Yoo D, Hamid MMA, Kim H, Moon J, Song J, Lee S, et al. Substitution effects of rice
 419 for corn grain in total mixed ration on rumen fermentation characteristics and microbial
 420 community in vitro. J Anim Sci Technol. 2020;62(5):638.
 421 https://doi.org/10.5187/jast.2020.62.5.638
- 422 19. Makkar H, Sharma O, Dawra R, Negi S. Simple determination of microbial protein in 423 rumen liquor. J Dairy Sci. 1982;65(11):2170-3. https://doi.org/10.3168/jds.S0022-424 0302(82)82477-6
- 425 20. Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF.

- 426Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic427Sea. ISME J. 2011;5(10):1571-9. https://doi.org/10.1038/ismej.2011.41
- 428 21. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al.
 429 Reproducible, interactive, scalable and extensible microbiome data science using QIIME
 430 2. Nat Biotechnol. 2019;37(8):852-7. https://doi.org/10.1038/s41587-019-0209-9
- 431 22. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2:
 432 High-resolution sample inference from Illumina amplicon data. Nat Methods.
 433 2016;13(7):581-3. https://doi.org/10.1038/nmeth.3869
- 434 23. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA
 435 ribosomal RNA gene database project: improved data processing and web-based tools.
 436 Nucleic Acids Res. 2012;41(D1):D590-D6. https://doi.org/10.1093/nar/gks1219
- 437 24. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al.
 438 PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38(6):685-8.
 439 https://doi.org/10.1038/s41587-020-0548-6
- 440 25. Tang Y, Horikoshi M, Li W. ggfortify: unified interface to visualize statistical results of
 441 popular R packages. R J. 2016;8(2):474.
- Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat
 Commun. 2020;11(1):3514. https://doi.org/10.1038/s41467-020-17041-7
- Lin C, Kung L. Heat treated soybeans and soybean meal in ruminant nutrition. Technical
 Bull. American Soybean Assoc. & United Soybean Board (1999): 1-18.
- 446 28. Waltz DM, Loerch S. Effect of acid and alkali treatment of soybean meal on nitrogen
 447 utilization by ruminants. J Anim Sci. 1986;63(3):879-87.
 448 https://doi.org/10.2527/jas1986.633879x
- 449 29. Arroyo J, González J, Muñoz J, Alvir M, Rodríguez C, Ibanez M, et al. In vitro
 450 efficiency of combined acid-heat treatments for protecting sunflower meal proteins
 451 against ruminal degradation. Animal. 2011;5(8):1188-94.
 452 https://doi.org/10.1017/S1751731111000279
- Arroyo J, González J, Ouarti M, Silván JM, del Castillo MR, De la Pena Moreno F.
 Malic acid or orthophosphoric acid-heat treatments for protecting sunflower (Helianthus annuus) meal proteins against ruminal degradation and increasing intestinal amino acid supply. Animal. 2013;7(2):223-31. https://doi.org/10.1017/S1751731112001292

- 457 31. Vanegas J, González J, Alvir M, Carro M. Influence of malic acid-heat treatment for
 458 protecting sunflower protein against ruminal degradation on in vitro methane
 459 production: A comparison with the use of malic acid as an additive. Anim Feed Sci
 460 Technol. 2017;228:123-31. https://doi.org/10.1016/j.anifeedsci.2017.04.015
- 461 32. Haro A, Gonzalez J, de Evan T, de la Fuente J, Carro MD. Effects of feeding rumen462 protected sunflower seed and meal protein on feed intake, diet digestibility, ruminal,
 463 cecal fermentation, and growth performance of lambs. Animals. 2019;9(7):415.
 464 https://doi.org/10.3390/ani9070415
- 465 33. Wright D. Citric acid metabolism in the bovine rumen. Appl Microbiol. 1971;21(2):165466 8. https://doi.org/10.1128/am.21.2.165-168.1971
- 467 34. Sommart K, Parker D, Rowlinson P, Wanapat M. Fermentation characteristics and 468 microbial protein synthesis in an in vitro system using cassava, rice straw and dried ruzi 469 grass as substrates. Asian-Australas J Anim Sci. 2000;13(8):1084-93.
 470 https://doi.org/10.5713/ajas.2000.1084
- Ki KS, Park SB, Lim DH, Seo S. Evaluation of the nutritional value of locally produced
 forage in Korea using chemical analysis and in vitro ruminal fermentation. AsianAustralas J Anim Sci. 2017;30(3):355. https://doi.org/10.5713/ajas.16.0626
- Wu H-H, Pun MD, Wise CE, Streit BR, Mus F, Berim A, et al. The pathway for
 coenzyme M biosynthesis in bacteria. Proceedings of the National Academy of Sciences.
 2022;119(36):e2207190119.
- 477 37. Krizsan SJ, Ramin M, Chagas JC, Halmemies-Beauchet-Filleau A, Singh A, Schnürer A,
 478 et al. Effects on rumen microbiome and milk quality of dairy cows fed a grass silage479 based diet supplemented with the macroalga Asparagopsis taxiformis. Front Anim Sci.
 480 2023;4:1112969. https://doi.org/10.3389/fanim.2023.1112969
- 481 38. Russell JB, O'connor J, Fox D, Van Soest P, Sniffen C. A net carbohydrate and protein
 482 system for evaluating cattle diets: I. Ruminal fermentation. J Anim Sci.
 483 1992;70(11):3551-61. https://doi.org/10.2527/1992.70113551x
- 484 39. Bach A, Calsamiglia S, Stern MD. Nitrogen metabolism in the rumen. J Dairy Sci.
 485 2005;88:E9-E21. https://doi.org/10.3168/jds.S0022-0302(05)73133-7

486
40. Zhang X, Zhang H, Wang Z, Zhang X, Zou H, Tan C, et al. Effects of dietary 487 carbohydrate composition on rumen fermentation characteristics and microbial 488 population in vitro. Ital J Anim Sci. 2015;14(3):3366. 489 https://doi.org/10.4081/ijas.2015.3366

- 490 41. Berthiaume R, Benchaar C, Chaves A, Tremblay G, Castonguay Y, Bertrand A, et al.
 491 Effects of nonstructural carbohydrate concentration in alfalfa on fermentation and
 492 microbial protein synthesis in continuous culture. J Dairy Sci. 2010;93(2):693-700.
 493 https://doi.org/10.3168/jds.2009-2399
- 494 42. Liu Q, Wang C, Guo G, Huo W, Zhang Y, Pei C, et al. Effects of branched-chain volatile fatty acids supplementation on growth performance, ruminal fermentation, nutrient digestibility, hepatic lipid content and gene expression of dairy calves. Anim Feed Sci Technol. 2018;237:27-34. https://doi.org/10.1016/j.anifeedsci.2018.01.006
- 498 43. Sutton J, Morant S, Bines J, Napper D, Givens D. Effect of altering the starch: fibre ratio
 499 in the concentrates on hay intake and milk production by Friesian cows. J Agric Sci.
 500 1993;120(3):379-90. https://doi.org/10.1017/S0021859600076541
- 44. Ransom-Jones E, Jones DL, McCarthy AJ, McDonald JE. The Fibrobacteres: an
 important phylum of cellulose-degrading bacteria. Microb Ecol. 2012;63:267-81.
 https://doi.org/10.1007/s00248-011-9998-1
- 45. Qin X, Zhang D, Qiu X, Zhao K, Zhang S, Liu C, et al. 2-hydroxy-4-(methylthio)
 butanoic acid isopropyl ester supplementation altered ruminal and cecal bacterial
 composition and improved growth performance of finishing beef cattle. Front Nutr.
 2022;9:833881. https://doi.org/10.3389/fnut.2022.833881

509 **Tables and Figures**

510

511 **Table 1.** Chemical composition of experimental diets

		Tre	eatments ¹⁾	
	No-C	itric acid	Citric	acid
L (2)	No-heat	Heat	No-heat	Heat
nems-/	(SBM)	(HSBM)	(CSBM)	(HCSBM)
DM (%)	90.3	99.5	89.6	97.4
CP (%DM)	51.6	52.6	47.7	47.9
EE (%DM)	1.83	1.72	1.70	2.18
NDF (%DM)	8.51	16.7	8.02	13.4
Lignin (%DM)	0.80	2.43	1.23	2.03
Ash (%DM)	7.31	7.18	6.94	6.51
GE (MJ/kg of DM)	18.9	19.5	18.7	18.8

¹⁾ SBM, untreated soybean meal; HSBM, heat-treated soybean meal; CSBM, citric acid-treated

513 soybean meal; HCSBM, heat and citric acid-treated soybean meal

Ű

²⁾ DM, dry matter; CP, crude protein; EE, ether extract; NDF, neutral detergent fiber; GE, gross

515 energy

		Trea	tment ¹⁾					
	No-Cit	ric acid	Citr	ic acid			<i>p</i> -value ²⁾	
Itoma	No-heat	Heat	No-heat	Heat	SEM	Heat	CA	
Items	(SBM)	(HSBM)	(CSBM)	(HCSBM)	SEIVI	пеа	CA	п×С
Gas production (mL/g	DM)							
3 h	55.9 ^{bc}	51.7°	65.7 ^a	59.0 ^b	1.77	0.007	< 0.001	0.471
6 h	106 ^b	97.9 ^c	118 ^a	97.6°	2.17	< 0.001	0.014	0.011
9 h	148 ^b	136 ^c	160 ^a	128 ^d	2.63	< 0.001	0.568	0.002
12 h	185 ^b	169°	194 ^a	151 ^d	2.90	< 0.001	0.136	< 0.001
24 h	260 ^a	234 ^b	264 ^a	214 ^c	1.84	< 0.001	< 0.001	< 0.001
Methane (%)	11.7a	11.3 ^b	10.8 ^c	10.6 ^c	0.11	0.003	< 0.001	0.793
Methane (mL/g DM)	30.3ª	26.5°	28.6 ^b	22.6 ^d	0.28	< 0.001	< 0.001	< 0.001
Fitted parameters of ga	as ³⁾			$\langle \rangle$				
V_{max}	299ª	282 ^b	290ª	246°	5.00	< 0.001	< 0.001	< 0.001
\mathbf{K}_{g}	0.076 ^{ab}	0.071 ^b	0.084 ^a	0.082^{a}	0.0034	0.013	< 0.001	0.492

517 **Table 2.** *In vitro* gas production characteristics and methane emission of experimental diets incubated

518 in buffered rumen fluid

¹⁾ SBM, untreated soybean meal; HSBM, heat-treated soybean meal; CSBM, citric acid-treated

520 soybean meal; HCSBM, heat and citric acid-treated soybean meal

521 ²⁾ CA, effect of citric acid addition; $H \times C$, interaction

522 ³⁾ V_{max} , theoretical maximum gas production (mL/g DM); K_g, fractional rate of gas production (h⁻¹)

523 ^{a,b,c,d} Values within a row with different superscripts differ significantly at p < 0.05.

	Treatments ¹⁾							
	No-Cit	ric acid	Citr	ic acid			<i>p</i> -value ²⁾	
Itoms ³⁾	No-heat	Heat	No-heat	Heat	SEM	Hoot	CA	Ц×С
items *	(SBM)	(HSBM)	(CSBM)	(HCSBM)	SLIVI	Tieat	CA	II^C
IVDMD (%DM)	74.6 ^a	63.9 ^b	76.4 ^a	60.6 ^b	3.02	< 0.001	0.780	0.339
IVCPD (%CP)	71.8 ^a	51.3 ^b	71.5 ^a	45.8 ^b	3.47	< 0.001	0.151	0.180
NH ₃ -N (mg/dL)	64.5 ^a	52.8°	59.5 ^b	46.1 ^d	1.48	< 0.001	< 0.001	0.459
MCP (mg/mL)	0.28 ^a	0.24 ^b	0.26 ^b	0.18 ^c	0.009	< 0.001	0.016	< 0.001
рН	6.90 ^a	6.82 ^b	6.83 ^b	6.79 ^b	1.48	< 0.001	< 0.001	0.459
TVFA (mM)	65.4 ^{ab}	62.7 ^b	67.5 ^a	57.2°	1.01	< 0.001	< 0.001	0.020
VFA proportion (m	mol/mol)							
Acetate	535 ^d	548 ^c	566 ^b	581ª	1.96	<0.001	< 0.001	< 0.001
Propionate	191ª	190 ^a	175 ^b	166°	0.54	< 0.001	< 0.001	< 0.001
Iso-butyrate	45.4 ^a	42.5 ^b	42.4 ^b	43.3 ^b	0.45	0.007	< 0.001	< 0.001
Butyrate	110 ^a	111 ^a	108 ^b	103°	0.74	< 0.001	< 0.001	< 0.001
Iso-valerate	64.5 ^a	56.3°	59.3 ^b	56.1°	0.63	0.006	< 0.001	0.002
Valerate	53.9 ^a	51.7 ^b	50.1°	49.9°	0.53	< 0.001	< 0.001	< 0.001
A:P ratio	2.81°	2.89°	3.23 ^b	3.50 ^a	0.028	< 0.001	< 0.001	< 0.001

525 **Table 3.** *In vitro* fermentation parameters of experimental diets incubated in buffered rumen fluid

¹⁾ SBM, untreated soybean meal; HSBM, heat-treated soybean meal; CSBM, citric acid-treated

527 soybean meal; HCSBM, heat and citric acid-treated soybean meal

528 ²⁾ CA, effect of citric acid addition; $H \times C$, interaction

³⁾ IVDMD, dry matter degradability; IVCPD, crude protein degradability; NH₃-N, ammonia nitrogen;

530 MCP, microbial crude protein; TVFA, total volatile fatty acids; A:P ratio, acetate to propionate ratio

531 ^{a,b,c,d} Values within a row with different superscripts differ significantly at p < 0.05.

538 Fig 2. Principal coordinate analysis of rumen microbiota based on (A) unweighted UniFrac and (B)

539 weighted UniFrac distance matrices. Differences in the rumen microbiota were compared using

540 permutational multivariate analysis of variance.

(A) Phylum level

Fig 3. Predominant rumen microbiota at the (A) phylum and (B) genus levels. The visualized taxa include those with an occurrence rate of $\geq 30\%$ and a relative abundance of $\geq 0.5\%$ in at least one treatment. UCG represents an uncultured genus-level group, while UG denotes an unclassified genus. Others represent bacteria with an occurrence rate of < 30% and a relative abundance of < 0.5%.

549 Fig 4. Differentially abundant phyla were identified using the ANCOM-BC software. Only major phyla with an occurrence rate of \geq 30% and a relative 550 abundance of $\geq 0.1\%$ in at least one treatment were included in the evaluation. (A) Relative abundance of prokaryotic phyla, represented as mean \pm 551 standard error. Screening *p*-values were obtained using ANCOM-BC's global test, with only significantly different phyla based on the *p*-values visualized. 552 (B)-(G) Pairwise comparisons: (B) SBM vs. HSBM, (C) SBM vs. CSBM, (D) SBM vs. HCSBM, (E) HSBM vs. CSBM, (F) HSBM vs. HCSBM, and (G) 553 CSBM vs. HCSBM. Data are shown as log fold change ± 95% confidence interval, with red symbols indicating significantly different phyla.

Fig 5. Differentially abundant genera were identified using the ANCOM-BC software. Only major genera with an occurrence rate of $\ge 30\%$ and a relative abundance of $\ge 0.1\%$ in at least one treatment were included in the evaluation. (A) Relative abundance of prokaryotic genera, represented as mean \pm standard error. Screening *p*-values were obtained using ANCOM-BC's global test, with only significantly different genera based on *p*-values visualized. (B)–(G) Pairwise comparisons: (B) SBM vs. HSBM, (C) SBM vs. CSBM, (D) SBM vs. HCSBM, (E) HSBM vs. CSBM, (F) HSBM vs. HCSBM, and (G) CSBM vs. HCSBM. Data are shown as log fold change $\pm 95\%$ confidence interval, with red symbols indicating significantly different genera, while a blue symbol indicates a statistical tendency.

Pairwise	comparison	Pseudo-F	Adjusted P
SBM	HSBM	10.559	0.027
SBM	CSBM	2.106	0.174
SBM	HCSBM	5.377	0.029
HSBM	CSBM	5.927	0.027
HSBM	HCSBM	30.358	0.029
CSBM	HCSBM	12.524	0.029

- 571 **Fig 6.** Predicted functional profiles were inferred using PICRUSt2 (version 2.5.2) and matched using the KEGG database. (A) PCA plot based on KEGG
- 572 orthologs. Only primary KEGG modules with a relative abundance of $\geq 0.01\%$ in at least one treatment were assessed using ANCOM-BC. (B)-(G)
- 573 Differentially enriched KEGG modules Data are shown as log-fold changes with 95% confidence intervals. Red symbols indicate significantly different
- 574 KEGG modules, whereas blue symbols denote statistical tendencies.