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Abstract 49 

A total of 150 crossbred male pigs [21±1 days old; 8.85±0.15 Kg body weight (BW)] were randomly assigned to five 50 

dietary treatments with five replicates per treatment and six pigs per pen to evaluate the effect of paraformic acid 51 

(PFA), as a substitute to antibiotics, on growth performance, intestinal morphology, and gut microbiota of nursery 52 

pigs. The treatments were: 1) NC: nutrient adequate control diet; 2) PFA1: similar to NC plus 0.30% PFA; 3) PFA2: 53 

similar to NC plus 0.60% PFA; 4) PFA3: similar to NC plus 1.0% PFA; and 5) PC: similar to NC plus 0.15% of 54 

chlortetracycline. Pigs were fed the same nutritional profile during the two-phase feeding regime [phase 1 (P1; d 0–55 

14), and phase 2 (P2; d 15–30)]. Initial BW, and BW and feed disappearance at the end of each phase were recorded 56 

to calculate average daily feed intake (ADFI), average daily gain (ADG), and feed to gain ratio (F: G). The Fecal score 57 

was determined at the end of P1, while the intestinal morphology and microbiota analysis were performed at the end 58 

of P2. Pigs fed PFA2 had higher ADG than those fed NC in P1. A quadratic response was found in the overall phase 59 

1 and phase 2 (P1&2) with the highest ADG in pigs fed PFA2 (p < 0.05). Pigs fed PC had the highest ADFI during 60 

P2 and overall P1&2 (p < 0.05). The PFA2 group had the lowest F:G ratio among treatments in P1 and P2, with a 61 

quadratic response in the overall P1&2 (p < 0.05). Pigs fed PFA1, PFA2, PFA3, and PC showed better fecal 62 

consistency than NC (p < 0.05). No differences were found in intestinal morphology among treatments. PFA groups 63 

supplementation modulated the relative abundance of Lactobacillus and Streptococcus in the jejunum. In the cecum, 64 

PFA2 had a higher relative abundance of  Prevotella when compared to NC, but lower than PC. In addition, pigs fed 65 

the NC diet had higher abundance of Treponema and Methanobrevibacter than other treatments. In conclusion, the 66 

supplementation of 0.6% PFA improved growth performance and modulated gut microbiota in nursery pigs.  67 

Keywords: Paraformic acid, Nursery pigs, Microbiota, Intestinal morphology, Antibiotics.  68 

 69 

INTRODUCTION 70 

In the modern swine industry, suckling pigs face early weaning stress [1,2], involving dietary and social 71 

changes such as switching from sow ś milk to a solid and less palatable plant-based feed, adaptations to a new facility, 72 

and establishment of hierarchy between pigs from other litters [3,4]. These sudden events affect normal feed 73 

consumption behavior [5]. A reduced feed intake generates morpho-functional modifications of intestinal villus, 74 

hyperplasia of crypt depth [6], reduction in digestive enzyme secretions [7], as well as increased permeability to 75 

antigens and toxins [8]. Besides these, the inefficient gastric enzyme activity of pigs during the weaning period, due 76 
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to a low capacity of hydrochloric acid secretion, allows the flow of a high amount of undigested and contaminated 77 

feed to the hindgut [9,10]. As a consequence, it provides ideal conditions for the proliferation of pathogenic bacteria 78 

and the onset of post-weaning diarrhea (PWD) [11].  79 

For decades, PWD; one of the most economically relevant diseases in pigs [12], has been efficiently 80 

controlled by the therapeutic use of antibiotics [13,14]. However, the continued overuse of antibiotics to combat 81 

diseases in both livestock and humans has resulted in the development of bacterial resistance to therapeutic treatments 82 

[15,16]. Given the necessity of reducing the use of antibiotics, because of  public health concern, it is crucial to develop 83 

new feed additive-based nutritional strategies to control gastrointestinal infections related to the weaning transition 84 

without adverse effects on human health and the environment [11].  85 

The organic acids, based on their acidifying property and their capacity to control the growth of fungal and 86 

enteropathogenic bacteria [17], have been efficiently used for decades as feed hygiene enhancers in animal diets 87 

[18,19]. Nursery studies have evidenced that organic acids could be used as a powerful tool in maintaining gut health 88 

by suppressing the proliferation of pathogenic bacteria such as E. coli [20,21] Clostridium perfringens [22], and 89 

Salmonella [23].  90 

Formic acid has especially been demonstrated to enhance gastric activity [24], gut health [25], immune status 91 

[26], and modulate the microbiota [26], leading to improvement of growth performance in nursery pigs. However, 92 

formic acid is corrosive [27,28], thus affecting equipment life, creating handling difficulties, and also causing general 93 

irritation to workers [29,30]. These disadvantages limit its usage in animal husbandry [17]. Interestingly, formic acid 94 

derivatives have been receiving more attention regarding animal feed formulations due to their non-corrosive and non-95 

irritating characteristics [17], without loss of their antimicrobial properties and improvements in growth performance 96 

[20,31].  97 

Paraformic acid (PFA), a new formic acid derivative, is a dimer formed from two formic acid molecules and 98 

obtained through a polymerization process [23]. Up to now, there is no evidence of whether PFA exhibits beneficial 99 

effects on the performance of nursery pigs. Therefore, this study aimed to evaluate the effect of PFA supplementation 100 

at different concentrations on growth performance, intestinal morphology, and gut microbiota of nursery pigs.  101 

 102 

MATERIAL AND METHODS  103 

Animal care 104 
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The protocol was reviewed and approved by the Animal Care and Use Committee of the South China 105 

Agricultural University, Guangzhou, China (approval number 2021f082). The animal experiment was conducted 106 

according to the Regulations for the Administration of Affairs Concerning Experimental Animals (Ministry of Science 107 

and Technology, China). The maximum dosage of formic acid allowed in all species is 10000 mg/kg according to 108 

European Union (EU) regulations 2017/940. The highest level of  PFA used in this study was 10 kg/Ton of formulated 109 

feed to follow the regulations established by the EU [32]. PFA is a new molecular ingredient made from formic acid 110 

and is broken into formic acid molecules in low pH solutions. The dosages used in this experiment did not show any 111 

sign of toxicity in the pigs.  112 

Animals and experimental diets 113 

 A total of 150 crossbred male pigs [21±1 day old; 8.85±0.15 Kg of body weight (BW)] were transferred to 114 

the conventional nursery facility of Numega Livestock Research Center, Foshan, China, for a 30-day nursery study. 115 

Pigs were randomly assigned to five dietary treatments with five replicates (pen) per treatment and six pigs per 116 

replicate. The pigs were raised in a naturally ventilated house and had ad libitum access to feed and water during the 117 

entire experiment.  118 

There were five dietary treatments: 1) Negative control (NC): nutrient-adequate control diet, formulated to 119 

meet or exceed the nutritional requirement according to the NRC [33]; 2) PFA1: similar to NC plus the addition of 120 

0.30% of PFA (paraformic acid® , Numega Nutrition Pte. Ltd, Singapore); 3) PFA2: similar to NC plus the addition of 121 

0.60% of PFA; 4) PFA3: similar to NC plus the addition of 1.0% of PFA; 5) Positive Control (PC): similar to NC plus 122 

the addition of 0.15% of chlortetracycline (Citifac 20% chlortetracycline; CP BIO Co.,Ltd, China). Pigs were fed the 123 

same nutritional profile during the two-phase feeding regime [ phase 1 (P1; d 0–14), and phase 2 (P2; d 15–30); Table 124 

1].   125 

Chemical analysis of diets 126 

The percentage of crude protein, crude fat, crude fiber, calcium and phosphorous were determined 127 

following the method AOAC 976.05, AOAC 920.39, AOAC 962.09, AOAC 927.02, AOAC 964.06, respectively 128 

(Table 2) [34].   129 

Data recording and sample collection  130 

Performance 131 
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Individual BW on d 0, and BW and feed disappearance at the end of each phase were recorded to calculate 132 

average daily gain (ADG), average daily feed intake (ADFI), and feed to gain ratio (F: G) per phase.     133 

Fecal consistency  134 

At the end of P1, rectal stimulation was performed with sterile swabs to obtain fresh feces. Fecal samples 135 

were used to evaluate the fecal consistency following the scoring index described by Sherman et al. [35]: 0, normal 136 

(feces firm and well-formed); 1, soft consistency (feces soft and formed); 2, mild diarrhea (fluid feces, usually 137 

yellowish); and 3, severe diarrhea (feces watery and projectile).  138 

Intestinal morphology  139 

One pig per pen was sacrificed at the end of P2, following the method described by Hu et al. [36]. Per 140 

treatment, a total of six subsamples of middle sections of jejunum tissue were collected and used for measuring 141 

intestinal morphology according to the procedure described by Núñez et al. [37]. After sampling, tissues were 142 

immediately fixed in 10% neutral buffer formalin, dehydrated with normal saline, carefully embedded in paraffin, and 143 

then sliced into 6 µm thick sections. Finally, tissues were stained with haematoxylineosin for histological evaluation. 144 

The villus height (VH), villus width (VW) crypt depth (CD), and the villus height to crypt depth ratio (VH:CD) 145 

conformed to the morphological analysis and were addressed by a computer-assisted system (image-analysis system; 146 

Biowizard, Thaitec, Thailand). The VH was measured from the tip of the villus to the base between individual villi. 147 

The VW was determined as the distance of the base width of the duodenal villi, while the CD measurements were 148 

taken from the valley between individual villi to the basal membrane. The CH:CD was calculated as the VH divided 149 

by CD.  150 

Sampling, DNA extraction, and sequencing 151 

Sterile swabs were used to collect jejunum and cecum digesta samples. Samples were preserved in Puritan®  152 

Liquid Amies and transported to lab on ice, then stored at -80 ºC until DNA extraction. The genomic DNA was 153 

extracted using the Omega Bio-tek E.Z.N.A. TM stool DNA kit (Norcross, GA, United States), followed by agarose 154 

gel electrophoresis and Nanodrop to detect the purity and concentration of the DNA. The V4 region of 16S rRNA was 155 

amplified using the 515F and 806R primer. The TIANSeq Rapid DNA Library kit (TIANGEN Biotech) was used to 156 

build a sequencing library, and then sequencing was performed through the Illumina Miseq System (illumine, San 157 

Diego, CA, USA).   158 

Data analysis  159 
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Data were analyzed using the PROC GLM procedure of SAS (SAS Institute, Inc., Cary, NC) as a Randomized 160 

Complete Design. Pen was the experimental unit for ANOVA. Orthogonal contrasts were used to determine the linear 161 

and quadratic effect of increased levels of PFA in diets (PFA1, PFA2, and PFA3). Probability (p) value < 0.05 were 162 

considered significant, and p values between 0.05 and 0.10 as trends. Raw sequencing data were analyzed via QIIME2 163 

(2019. 10 release). Alpha diversity and beta diversity were used to analyze the complexity of species diversity based 164 

on different indexes (Shannon index, and Chao1 index).  165 

 166 

RESULTS  167 

 All piglets were healthy throughout the experimental period. In P1, there were statistical differences in ADG, 168 

with the highest gain in pigs fed PFA2 (p < 0.05), while there were no differences in ADG during P2 (Table 3). 169 

However, a quadratic response was observed (p < 0.05) in the overall phase 1 and phase 2 (P1&2) with the highest 170 

ADG in pigs fed PFA2. The results of ADG were consistent with the BW per phase, where there was a significant 171 

difference in the BW at the end of P2 (p < 0.05) and a quadratic tendency on the final BW, being those fed PFA2 the 172 

heaviest pigs. No differences were observed in the ADFI during P1. Pigs fed PC showed the highest ADFI (p < 0.05) 173 

in P2 and P1&2, with NC, PFA2, and PFA3 as intermediate, and the PFA1 group with the lowest ADFI.  Furthermore, 174 

there was a positive linear response (p < 0.05) in ADFI in pigs fed increasing levels of PFA (PFA1, PFA2, PFA3) in 175 

P2 and P1&2. Regarding to F: G ratio, pigs fed any PFA level showed lower F: G than NC and PC treatments in P1, 176 

P2, and P1&2 (p < 0.05). Additionally, a quadratic response was observed in the P1&2 (p < 0.05) with the lowest ratio 177 

in pigs fed PFA2.   178 

Pigs fed any level of PFA (0.3%, 0.6%, and 1.0%) or PC had better fecal scores than pigs fed the NC diet (p 179 

< 0.05; Table 4). Furthermore, increasing the level of PFA led to a linear reduction in the fecal score at the end of P1 180 

(p < 0.05).   181 

There were no statistical differences in the VH, VW, CD, and VH:CD. Pigs fed PFA2 had the best numerical 182 

response regarding the morphological parameters evaluated in this study (Table 5; Figure 1).  183 

The bacterial diversity and richness were not significantly influenced by the different dietary treatments in 184 

the jejunum (Shannon index and Chao1 index: Figure 2A and 2B, respectively), while the weighted and unweighted 185 

Unifrac based on principal coordinate analysis show differences in community structures based on treatment groups 186 

(Figure 2C and 2D). In the cecum, no differences were observed in the Shannon index between treatments (Figure 187 
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2E), while a tendency to differ was observed in the Chao1 index, with higher diversity in the PFA3 group (Figure 2F). 188 

In addition, differences in community structures among treatments were observed in the weighted and unweighted 189 

Unifrac based on principal coordinate analysis (Figure 2G and 2H, respectively). 190 

The relative abundance of the most dominant jejunal and cecal microbiota is shown in Figure 3. Lactobacillus 191 

and Streptococcus showed higher relative abundance in pigs fed PFA3 and PFA2, respectively, (Figure 4A and 4B). 192 

On the other hand, the most notable changes in the relative abundance, at the genus level, in cecum samples were 193 

Prevotella, Treponema, and Methanobrevibacter (Figure 4C, 4D, and 4E, respectively). Pigs fed PC had the highest 194 

relative abundance of Prevotella among treatments, followed by PFA groups (PFA1, PFA2, and PFA3) as intermediate, 195 

and NC as the lowest group. Furthermore, PFA1, PFA2, PFA3, and PC treatment had a lower relative abundance of 196 

Treponema and Methanobrevibacter than the NC group.  197 

 198 

DISCUSSION  199 

Organic acids have gained attention in the last few years due to their antimicrobial effects on gut microbiota 200 

and improvements in the general performance of pigs [25,38,39]. Several studies summarized by Luise et al. [17] 201 

suggested that incorporating formic acid as a feed supplement might improve the general performance of nursery pigs. 202 

Among them, the main evidence indicates that formic acid modifies the acidic condition of the feed, hindering the 203 

growth of pathogenic bacteria and improving the hygiene of the feed [40]. Furthermore, formic acid reduces stomach 204 

pH, offering the ideal condition for more efficient activity of digestive enzymes [24] as well as acting as an 205 

antimicrobial agent, suppressing the survival and colonization of low pH intolerant pathogenic bacteria [41].  206 

 In the current study, the ADG of pigs that received PFA-supplemented nursery feed highlighted the health 207 

benefits that eased weaning transition stress. The supplementation of PFA2 evidenced a better daily gain of 66.63 g 208 

and 65.48 g over pigs fed NC in P1 and P1&2, respectively, and 18.46 g and 38.08 g over pigs fed PC diet in P1 and 209 

P1&2, respectively. Similar results were reported by Dahmer et al. [26] where nursery pigs fed 0.70% of formic acid 210 

showed higher ADG than those supplemented with the basal diet. Interestingly, pigs had an ADG of 470 g, similar to 211 

the ADG found in this study (466 g) with 0.60% of PFA inclusion. Additionally, Luise et al. [42] reported overall 212 

improvements in ADG with nursery pigs supplemented with 0.64% of formic acid on day 21 after weaning. The 213 

growth performance improvements found in this study with pigs fed PFA might be due to the reduction of pathogenic 214 

bacteria in the feed attributed to the acid ś presence before consumption, as well as the enhancement of pepsin enzyme 215 
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activity by lowering the stomach pH, which in turn improved the nutrient utilization, and a lower amount of undigested 216 

feed available in the gut for pathogenic bacteria growth. This assumption might be supported by the results of the fecal 217 

score, where the pigs under PFA supplementation or PC had a similar fecal consistency, classified between normal 218 

and soft and well-formed feces, while those fed NC showed an incidence of mild diarrhea. The incidence of diarrhea 219 

in nursery pigs is a consequence of a complex interaction of several infectious agents that colonize the intestines and 220 

secrete their endotoxins [12], which in turn generate a cascade of inflammatory responses, intestinal tissue damage as 221 

well as secretion of fluids [1]. As a result of these complex interactions, PWD is generated leading to a reduction in 222 

nutrient utilization, and reductions on the general growth performance of nursery pigs.    223 

Some studies have reported no positive effects on ADFI and F: G ratio in nursery pigs fed 0.2 % [43] or 0.5% 224 

[44] of formic acid. Such results are contradictory to the findings of this study, where increasing the level of PFA 225 

stimulated the ADFI and showed a lower F:G ratio, mainly in those fed intermediate levels of PFA (0.6%), when 226 

compared to those fed NC or PC diets. Based on the physicochemical properties of organic acids, a normal formic 227 

acid molecule has a pungent odor plus irritating and corrosive characteristics [29,45]. Eisemann and Heugten [46] 228 

evaluated three different levels of formic acid (0.8%, 1.0% y 1.2%) in combination with ammonium formate, and 229 

reported a reduction in feed intake as the inclusion level of formic acid was increased during the nursery phase 2 and 230 

grower phases. However, feed intake tended to increase in those pigs fed diets devoid of formic acid plus ammonium 231 

formate. Furthermore, Ettle et al. [47] studied the self-selection of feed with or without acidifier and its impact on feed 232 

intake behavior. Pigs under the feed self-selection study had preferences for unacidified diets versus acidified diets 233 

with 1.2% or 2.4% of K-diformate. However, in the second part of the experiment, pigs were given the choice between 234 

a 1.2% formic acid diet or 1.2% sorbic acid diet, and they showed a preference for the sorbic acid-based diet over the 235 

formic acid-based diet, reducing feed intake due to possible low palatability. Based on the above-mentioned, it is 236 

possible to speculate that the supplementation of PFA might not exert negative effects on feed palatability, allowing 237 

the supplementation with a higher inclusion level of formic acid without reductions on ADFI as evidenced by the 238 

positive linear response as increased the PFA inclusion on the overall ADFI. Additionally, the supplementation of 239 

PFA2 showed to exert the highest benefit on feed efficiency, supported by the reduction in the F:G ratio as well as the 240 

obtained quadratic response.   241 

Overall, pigs fed NC and PC consumed 11.74 g and 54.36 g, respectively, more than pigs fed PFA2. 242 

Interestingly, pigs fed PFA2 gained 66.21 g and 38.08 g more than the NC and PC groups, respectively. The highest 243 
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daily gain obtained in the PFA2 group supports the BW of PFA2 pigs with 1.89 kg over NC group and 0.85 kg over 244 

PC group. These results show that the PFA practical inclusion of 0.6 % in nursery diets is feasible as a potential 245 

substitute for antibiotics, during the early nursery period. Further studies should be conducted to evaluate PFA 246 

supplementation from the nursery and follow-up on pig performance through the finisher period to determine the 247 

potential impact of PFA supplementation compared with antibiotics at the end of the fattening period. 248 

It has been well evidenced that weaning is a stressful period that affects intestinal morphology and health 249 

through a reduction in intestinal cell renewal and increments of apoptosis or cell death [48,49]. However, healthy 250 

intestinal morphological structures such as VH, and CD are important morpho-functional characteristics for nutrient 251 

digestion and absorption that exert pronounced effects on performance [50]. In the current study, the supplementation 252 

of PFA at different concentrations, or PC did not show differences in VH, CD, VW, and VH:CD ratio. However, the 253 

PFA2 group showed a remarkable numerical increase in VH, VW, VH:CD ratio, and lower CD than pigs under the 254 

PC diet or NC. Long et al. [51] evaluated a synergistic blend of free and buffered short-chain fatty acids composed of 255 

formic acid, acetic acid, and propionic acid at a 0.30% inclusion level in nursery pigs. They found a lack of notable 256 

changes in VH and CD in the duodenum, jejunum, or ileum compared to the antibiotic or control group. Furthermore, 257 

Manzanilla et al. [44] reported no differences in VH and CD with pigs fed 0.5% formic acid versus 0.30% of a plant 258 

extract containing carvacrol, cinnamaldehyde, and capsicum oleoresin. Similarly, a chicken study reported no changes 259 

in morphological structures of the intestine when the birds were fed 0.05% or 0.10% of formic acid, plant extract 260 

mixture, or antibiotic as growth promoters [52]. VH reflects a balance between the mitotic activity of the crypt enteric 261 

cells and the desquamation produced principally by external aggressors [44]. Additionally, antimicrobial compounds 262 

such as organic acids have been evidenced to control the pathogenic load in the intestines, which in turn decreases the 263 

presence of toxins and reduces the damage on intestinal morphology, mainly on the villus height, thus offering 264 

conditions for nutrient utilization [53]. PFA at a concentration of 0.6% might potentially maintain better gut health 265 

based on the slight increase in VH reported in this study. Furthermore, the positive effects on F:G ratio of pigs fed 266 

PFA2 might be due to the slight improvements in VH, VW, and VH:CD ratio, offering a better absorptive area for 267 

nutrient utilization.  268 

 A balanced microbiota has been correlated with gut health and is responsible for different functions in the 269 

host such as nutrient absorption, metabolism, gastrointestinal development, and immune function [54]. Additionally, 270 

a good healthy condition has been linked with a high alpha diversity in humans [55,56] and pigs [57,58]. The Chao1 271 



12 
 

index is an indicator of microbial richness [59]. In this study, pigs fed PFA3 showed to stimulate the cecal microbial 272 

diversity, as reported by the Chao index. An organic acid-based study by Wei et al. [60] reported a higher diversity of 273 

microbial species in nursery pigs fed 0.10% of a blend of organic acids than those fed the control diet. Likewise, Li et 274 

al. [23] evaluated the supplementation of 0.1% of PFA in 42-day broiler chickens and evidenced a greater microbial 275 

richness. Nursery pigs are predisposed to face gut dysbiosis during the first weeks of weaning, and this imbalance of 276 

microbiota dramatically affects the microbial richness and predisposes the pigs to gastrointestinal disorders [11]. 277 

Based on these results, the use of PFA might help minimize dysbiosis and maximize the proliferation of beneficial 278 

bacteria, leading to improved bacterial richness.  279 

It has been well reported that the genera Lactobacillus [60] and Streptococcus are two of the most dominant 280 

groups of lactic acid bacteria in the proximal small intestine [61]. Lactobacillus and Streptococcus produce lactic acid, 281 

which benefits the control of some harmful bacteria in the gut. However, some potential pathogenic bacteria can 282 

multiply and colonize the main site of nutrient absorption and generate significant damage to intestinal morphology 283 

[62]. Because organic acids have demonstrated to reduce pH of stomach and small intestine due to their acidifying  284 

properties, the supplementation with PFA2 and PFA3 seems to modulate the proliferation of these bacteria, possibly, 285 

by adequations of the intestinal pH, thus offering the ideal condition for their proliferation. The improvements in 286 

growth performance might also be influenced by the proliferation of healthy microbiota and reduction of the 287 

development of potential pathogenic bacteria in the site of nutrient utilization.  288 

Mathanobrevibacter, a genus belonging to the order Methanobacteriales, is H2-oxidizing methanogens [63]. 289 

Approximately, 1.2% of ingested energy is lost by methane production in pigs, thus contributing to the greenhouse 290 

effect [64]. Recently, Li et al. [23] evaluated the feed supplementation of 0.1 % PFA for broiler chickens and reported 291 

a significant reduction in the relative abundance of methanogenic bacteria. Our results are similar to those evidenced 292 

by Li, where the supplementation of PFA reduced the abundance of Methanobrevibacter. Together, these results 293 

suggest that the supplementation of PFA reduces methane emissions, thus providing for a more environmentally 294 

friendly swine industry.   295 

Several species of treponemes are swine pathogens [65]. The genus Treponema causes ear necrosis and ulcers 296 

in pigs [66]. Interestingly, organic acids have been shown to efficiently reduce the Treponema abundance, specifically, 297 

the Brachyspira hyodysenteriae isolated from pigs [67]. The supplementation of PFA might help to maintain a 298 

healthier microbial population one month post-weaning by reducing the Treponema abundance in the gut. In addition, 299 
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the abundance of Prevotella, a group of fiber-fermenting bacteria, gradually increases during the transition period 300 

from a milk-based diet to a solid plant-based diet [68], and has been positively correlated with the growth performance 301 

of nursery pigs [69]. The supplementation of PFA groups or PC increases the relative abundance of Prevotella. Similar 302 

results were reported by Pluske et al. [70] where a blend of organic acids, including formic acid, modulates the 303 

prevotella abundance similarly to an amoxicillin-supplemented diet, demonstrating that organic acid derivatives can 304 

help to maintain healthy gut microbiota.  305 

 306 

CONCLUSION  307 

This study demonstrated that the supplementation of 0.6% PFA in nursery pig diets can efficiently replace 308 

the use of antibiotics, as a growth promoter, through beneficial modulation of the gut microbiota, enhancement of  309 

intestinal morphology, control of diarrhea incidence, and improvements in growth performance. This finding supports 310 

the benefits of using PFA as a feed additive in nursery pig diets. Further studies have to be conducted to evaluate PFA 311 

supplementation during nursery and follow-up on pig performance through the fattening period to determine the 312 

potential practical implication of PFA supplementation compared to antibiotics.  313 
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 512 
Table 1. Diet formulation and calculated composition of basal diet (as-fed basis).  513 

Ingredients NC PFA1 PFA2 PFA3 PC 

Corn 31.77 31.47 31.17 30.77 31.62 

Broken rice 20.00 20.00 20.00 20.00 20.00 

Fermented soybean meal 12.50 12.50 12.50 12.50 12.50 

Whey power 10.00 10.00 10.00 10.00 10.00 

Powercookies 5.00 5.00 5.00 5.00 5.00 

Fish meal (Peru) 5.00 5.00 5.00 5.00 5.00 

Concentrate soybean meal 5.00 5.00 5.00 5.00 5.00 

Extruded soybean 4.77 4.77 4.77 4.77 4.77 

Glucose 2.50 2.50 2.50 2.50 2.50 

Di-Calcium phosphate  0.53 0.53 0.53 0.53 0.53 

Vitamin premix1 0.50 0.50 0.50 0.50 0.50 

Mineral premix2 0.50 0.50 0.50 0.50 0.50 

L-lysine HCL 0.63 0.63 0.63 0.63 0.63 

DL-Methionine 0.33 0.33 0.33 0.33 0.33 

Salt 0.29 0.29 0.29 0.29 0.29 

L-threonine 0.28 0.28 0.28 0.28 0.28 

ZnO 0.25 0.25 0.25 0.25 0.25 

Choline chloride (50%) 0.10 0.10 0.10 0.10 0.10 

L-tryptophan 0.05 0.05 0.05 0.05 0.05 

Paraformic acid 0.00 0.30 0.60 1.00 0.00 

Antibiotic (Chlortetracycline) 0.00 0.00 0.00 0.00 0.15 

Total 100.00 100.00 100.00 100.00 100.00 

      

Calculated Composition:      

Metabolizable energy (Kcal) 3258.00 3235.00 3209.81 3177.70 3246.52 

Crude protein % 20.00 19.74 19.48 19.13 19.87 

Crude fat % 6.48 6.37 6.26 6.12 6.43 

Crude fiber % 2.86 2.81 2.76 2.70 2.84 

Ash % 4.67 4.63 4.59 4.53 4.65 

Calcium % 0.75 0.75 0.75 0.75 0.75 

Phosphorus % 0.81 0.73 0.65 0.54 0.77 

Available phosphorus % 0.39 0.39 0.39 0.39 0.39 

Lysine % 1.35 1.28 1.21 1.11 1.31 

Methionine + cysteine % 0.74 0.63 0.51 0.36 0.68 

Threonine % 0.87 0.78 0.69 0.57 0.83 

Tryptophan % 0.22 0.22 0.22 0.22 0.22 
1The vitamin premix provided per kilogram diet contain: 11375 IU of vitamin A, 3500 IU of vitamin D3, 26.3 IU of 514 
vitamin E, 3.5 mg of vitamin of K3, 3.5 mg of vitamin B1, 8.8 mg of riboflavin, 5.4 mg of vitamin B6, 0.03 mg of 515 
vitamin B12, 17.5 mg of pantothenic acid, 35.0 mg of niacin; 1.75 mg of folacin, 0.14 mg of biotin.  516 
2The mineral premix provided per kilogram of diet: 64.4 mg of Cu (cupric glycinate), 165.4 mg of Fe (iron glycine), 517 
47.8 mg of Mn (manganese glycinate), 47.8 mg of Zn (zinc glycinate), 0.54 mg of Se (yeast selenium), 0.68 mg of I 518 
(calcium iodate), 0.1 mg of Co (cobaltous sulfate). 519 
 520 
  521 
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 522 
 523 
 524 
Table 2. Chemical composition of experimental diets.   525 

Nutrients NC PFA1 PFA2 PFA3 PC 

Crude Protein, % 20.03 19.96 19.89 19.92 20.12 

Crude Fat, % 6.45 6.39 6.35 6.24 6.51 

Crude Fiber, % 2.87 2.90 2.81 2.76 2.86 

Calcium, % 0.73 0.72 0.70 0.71 0.72 

Phosphorous, % 0.82 0.81 0.80 0.82 0.81 

NC) nutrient adequate control diet; PFA1) similar to NC plus 0.3% of PFA ; PFA2) similar to NC plus 0.6% of PFA; 526 
PFA3) similar to NC plus 1.0 % of PFA; PC): similar to NC plus 0.15% of chlortetracycline.    527 
 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

  536 
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 537 

Table 3. Effects of PFA on growth performance of nursery pigs. 538 

Performance 

Parameters 

Treatments  P-value  

NC PFA1 PFA2 PFA3 PC SEM Trt Linear5 Quad5 

BW1, kg          

d 0 8.39a 8.69a 8.33a 8.73a 8.62a 0.23 0.62 0.88 0.14 

d 14 13.05a 13.92b 13.92b 14.06b 13.95b 0.30 0.05 0.70 0.83 

d 30 20.42a 21.36a 22.31a 21.33a 21.46a 0.58 0.29 0.95 0.10 

ADG2, g          

P1 (d 0-14) 332.5a 373.14b 399.13b 380.28b 380.67b 12.50 0.02 0.66 0.13 

P2 (d 15-30) 468.98a 471.62a 533.30a 459.26a 475.59a 31.37 0.49 0.79 0.11 

P1&2 (d 1-30) 400.73a 422.38a 466.21a 419.77a 428.13a 16.07 0.10 0.90 0.03 

ADFI3, g          

P1 (d 0-14) 431.35a 442.02a 423.00a 434.21a 462.03a 12.41 0.26 0.64 0.30 

P2 (d 15-30) 736.13ab 661.98a 721.0ab 789.85b 790.75b 32.00 0.05 0.03 0.92 

P1&2 (d 1-30) 583.74ab 552a 572ab 612.03bc 626.38c 16.67 0.03 0.03 0.64 

F: G4          

P1 (d 0-14) 1.30c 1.18abc 1.06a 1.15ab 1.22bc 0.04 0.01 0.55 0.07 

P2 (d 15-30) 1.62abc 1.46abc 1.39a 1.77c 1.72c 0.10 0.05 0.06 0.10 

P1&2 (d 1-30) 1.46bc 1.32ab 1.22a 1.46bc 1.47c 0.045 0.01 0.07 0.02 

 1Body Weight; 2Average daily gain; 3Average daily feed intake; 4Feed to gain ratio. 539 
5Ortogonal contrast to determine linear and quadratic response effects of increased levels of PFA in diets (PFA1, 540 
PFA2, and PFA3).    541 
Experiment was carried out after weaning during two nursery phases: phase 1 (P1): from day 0 to day 14; and phase 542 
2 (P2): from day 15 to day 30; Phase 1 and 2 (P1&2): from day 0 to 30.  543 
Treatments were: NC) nutrient adequate control diet; PFA1) similar to NC plus 0.3% of PFA ; PFA2) similar to NC 544 
plus 0.6% of PFA; PFA3) similar to NC plus 1.0 % of PFA; PC): similar to NC plus 0.15% of chlortetracycline.    545 
Bar graphs with superscripts a, b, and c differ at p < 0.05. 546 
 547 
 548 
  549 



24 
 

 550 
Table 4. Effects of PFA on fecal score of nursery pigs.  551 

Parameter  
Treatments   P-value  

NC PFA1 PFA2 PFA3 PC SEM Trt Linear1 Quad1 

Fecal Score 2.0a 1.05b 1.03b 0.95b 0.92b 0.14 0.05 0.02 0.93 

1Ortogonal contrast to determine linear and quadratic response effects of increased levels of PFA in diets (PFA1, 552 
PFA2, and PFA3).    553 
Bar graphs with superscripts a, b, and c differ at p < 0.05. Treatments were: NC) nutrient adequate control diet; PFA1) 554 
similar to NC plus 0.3% of PFA; PFA2) similar to NC plus 0.6% of PFA; PFA3) similar to NC plus 1.0 % of PFA; 555 
PC): similar to NC plus 0.15% of chlortetracycline.    556 
 557 
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Table 5. Effects of PFA on intestinal morphology of nursery pigs.  560 

Performance 

Parameters 

Treatments  P-value  

NC PFA1 PFA2 PFA3 PC SEM Trt Linear5 Quad5 

VH1,  mm 0.39a 0.42a 0.43a 0.4a 0.4a 0.04 0.95 0.72 0.71 

VW2, mm 0.18a 0.15a 0.19a 0.17a 0.16a 0.01 0.24 0.34 0.07 

CD3, mm 0.052a 0.051a 0.045a 0.058a 0.05a 0.01 0.65 0.34 0.18 

VH:CD4 7.68a 8.54a 9.48a 7.31a 8.48a 0.80 0.38 0.33 0.16 

1Villus height; 2Villus width; 3Crypt depth; 4Villus height to crypt depth ratio.  561 
1Ortogonal contrast to determine linear and quadratic response effects of increased levels of PFA in diets (PFA1, 562 
PFA2, and PFA3).    563 
Treatments were: NC) nutrient adequate control diet; PFA1) similar to NC plus 0.3% of PFA ; PFA2) similar to NC 564 
plus 0.6% of PFA; PFA3) similar to NC plus 1.0 % of PFA; PC): similar to NC plus 0.15% of chlortetracycline.  565 
Bar graphs with superscripts a, b, and c differ at p < 0.05. 566 
 567 
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 569 

 570 
Figure 1. Histological representation of jejunal A) villi and B) crypt depth of nursey pigs at the end of phase 2 (d 30) 571 
under different experimental diets. Treatments were: NC) nutrient adequate control diet; PFA1) similar to NC plus 572 
0.3% of PFA; PFA2) similar to NC plus 0.6% of PFA; PFA3) similar to NC plus 1.0 % of PFA; PC): similar to NC 573 
plus 0.15% of chlortetracycline.    574 
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 578 
Figure 2. Effects of paraformic acid (PFA), as antibiotic replacement, on community richness of the gut microbiota in 579 
A) Jejunum Shannon index; B) Jejunum Chao1 index; C) Jejunum weighted unifrac; D) Jejunum unweighted unifrac; 580 
E) Cecum Shannon index; F) Cecum Chao1 index; G) Cecum weighted unifrac; and H) Cecum unweighted unifrac.  581 
Treatments were: NC) nutrient adequate control diet; PFA1) similar to NC plus 0.3% of PFA; PFA2) similar to NC 582 
plus 0.6% of PFA; PFA3) similar to NC plus 1.0 % of PFA; PC): similar to NC plus 0.15% of chlortetracycline.    583 
 584 
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 588 
 589 
Figure 3. Relative bacterial abundance of top 10 genus in A) jejunum and B) cecum. Treatments were: NC) nutrient 590 
adequate control diet; PFA1) similar to NC plus 0.3% of PFA; PFA2) similar to NC plus 0.6% of PFA; PFA3) similar 591 
to NC plus 1.0 % of PFA; PC): similar to NC plus 0.15% of chlortetracycline.    592 
 593 
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 596 

Figure 4. Relative abundance of cecal microbiota (at the genus level) of A) Lactobacillus and B) Streptococcus in the 597 
jejunum, while C) Prevotella;  D) Treponema and E) Methanobrevibacter in the cecum. Treatments were: NC) nutrient 598 
adequate control diet; PFA1) similar to NC plus 0.3% PFA; PFA2) similar to NC plus 0.6% of PFA; PFA3) similar 599 
to NC plus 1.0 % of PFA; PC): similar to NC plus 0.15% of chlortetracycline.    600 
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