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Abstract 16 

Antimicrobial resistance poses challenges to humans and animals, especially to the poultry sector in control of 17 

fowl typhoid with antibiotics, leading to increased mortality and food insecurity. Therefore, it is essential to develop 18 

more effective medications as alternatives to antibiotics. Currently, zinc oxide and copper oxide nanoparticles are of 19 

such significant interest due to their antibacterial properties. This study aimed to evaluate antimicrobial activity of 20 

zinc oxide and copper oxide nanoparticles against fowl typhoid in broilers. Ninety broiler chicks were raised under 21 

suitable management conditions. On day 10 of age, chicks were divided into six groups: control negative, control 22 

positive, T1, T2, T3, and T4. On day 19 of age, chicks in all groups except control negative were infected with 23 

Salmonella gallinarum (0.2 mL, 108 CFU/mL). After appearance of clinical signs, the treatments (Florfenicol; 50 24 

mg/L drinking water (T1), and zinc oxide + copper oxide nanoparticles; 25+10 mg/Kg/d (T2), 37.5+15 mg/Kg/d (T3), 25 

and 50+20 mg/Kg/d (T4)) were administered to chicks. Chicks were sacrificed on 26th and 30th day of age, and 26 

samples of blood and tissue were obtained. Hematological analysis with gross and histopathological examination of 27 

spleen, thymus and bursa of Fabricius was performed. Results revealed that there was no visible congestion in spleen 28 

and thymus of T3 and T4 at 11th day post infection. Antibody level against new castle's disease and lymphoproliferative 29 

response showed no significant difference in all groups. However, phagocytic response in nanoparticles treated groups 30 

exhibited a notable (p < 0.01) distinction compared to control positive. Notably, T3 demonstrated the highest level of 31 

phagocytic activity. Hematological parameters, including lymphocytes, heterophils, eosinophils, and 32 

heterophils/lymphocytes ratio in groups T2, T3, and T4, indicated significant (p < 0.01) difference compared to control 33 

positive. However, lymphocytes, heterophils, and heterophils/lymphocytes ratio in groups T2, T3, and T4 showed no 34 

significant difference when compared to T1. Nanoparticle treated groups showed decreased (p < 0.01) congestion of 35 

spleen and thymus as compared to control positive. Overall, zinc oxide and copper oxide nanoparticles have potential 36 

to serve as an alternative to florfenicol in treatment of fowl typhoid. 37 
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Introduction 40 

The poultry sector has emerged as a vital industry in growing economies [1]. It not only meets the daily protein 41 

requirements of the growing population but also provides opportunities for employment [2] through the supply of 42 

high-quality food items such as chicken meat and eggs, ensuring global food security and nutrition [3, 4]. Poultry meat 43 

and eggs are important for human health because the protein and vitamins they contain play a crucial role in the 44 

development of immunity [5]. 45 

However, the poultry industry faces several challenges that jeopardize economic output and the health of animals 46 

and humans in many countries [6]. Poultry mortality is one of the main issues that hinder continuous food supply to 47 

the population and high mortality may be largely attributed to the spread of infectious diseases [7]. Fowl typhoid is a 48 

septicemic disease of poultry caused by gram negative bacterium Salmonella gallinarum which produces the 49 

endotoxins in the blood circulation of host. The disease is associated with substantial losses to the country’s economy 50 

through high mortality and decreased egg production [8]. Infectious diseases like salmonellosis, new castle’s disease 51 

(NDV), infectious bursal disease etc. are highly occurring diseases in poultry around the world causing high mortality 52 

in the birds [9]. These diseases are associated with the immunosuppression of the affected birds by damaging the 53 

immune organs leading to mortality [10]. The birds affected by fowl typhoid manifest clinical signs like depression, 54 

pale and shrunken comb, ruffled feathers, anorexia, dyspnea, huddling, diarrhea, and adherence of the excreta to the 55 

vent [8], and inflammation in the liver, spleen, cecum, and yolk sac [11]. The morbidity rate is very high, resulting in 56 

93–100% mortality occurring when the birds are infected with a bacterial load of 108 colony forming unit per milli 57 

liter (CFU/mL) [12]. Therefore, it is necessary to reduce the mortality in poultry from infectious diseases. 58 

Antibiotics are widely used for the prevention and treatment of various infectious diseases as well as growth 59 

promoters in poultry [13]. Although antimicrobial agents play a vital role in the control of morbidity and mortality in 60 

animals as well as humans, the extensive use of these agents has led to the generation of antimicrobial resistance 61 

(AMR) in pathogenic bacteria [14]. The irrational or irresponsible use of different antibiotics, especially florfenicol, 62 

promotes the prevalence of AMR in poultry farms [15]. The emergence and transmission of AMR strains of different 63 

bacteria not only affects poultry production but also threatens human health [16]. The AMR salmonella species can 64 

be transferred to humans while handling or slaughtering the infected birds which leads to human illness [17]. Therefore, 65 

the presence of AMR in animals raised for food is a significant concern [18] as it poses a substantial zoonotic risk to 66 

human health. This is especially true considering the abundance of AMR bacteria such as Salmonella, Campylobacter, 67 
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and Listeria [19]. Hence, there is an urgent requirement to develop alternative therapeutic treatments that can replace 68 

antibiotics. 69 

Nanotechnology is a new field of science with extensive applications in the development of nanomedicine [20]. 70 

Several metals including zinc oxide (ZnO) and copper oxide (CuO) nanoparticles have excellent antibacterial activity 71 

against gram-positive and gram-negative bacteria [21]. Hameed et al. [22] reported that ZnO nanoparticles can inhibit 72 

the growth of Escherichia coli and Klebsiella pneumoniae on the culture plates and increased the zone of inhibition. 73 

Similarly, the in vitro antibacterial activity of ZnO nanoparticles against E. coli, Enterobacter aerogenes, Micrococcus 74 

luteus, and Bacillus subtilis were also documented [23]. Recently, the in vitro antibacterial activity of ZnO and CuO 75 

nanoparticles has been studied against B. subtilis, E. coli, Staphylococcus aureus, Salmonella typhimurium, and 76 

Pseudomonas aeruginosa [24]. Kim et al. [25] reported that pigs treated with nano ZnO showed increased average 77 

daily weight gain and decreased incidence of fecal score and diarrhoea. Nano ZnO also inhibited the colonization of 78 

E. coli, S. typhimurium, and Listeria monocytogenes. 79 

The gram-positive and gram-negative bacteria have different structures of cell wall. The gram-positive bacteria 80 

have a thick layer of peptidoglycan in the cell wall while the gram-negative bacteria have thin layer of peptidoglycan 81 

and an additional layer of lipopolysaccharide molecules in the cell wall which carry a negative charge. The negative 82 

charge have more affinity for positive ions released from nanoparticles, causing an increased uptake of ions leading 83 

to intracellular damage in bacterial cell [26]. The antibacterial activity of ZnO and CuO nanoparticles is due to the 84 

generation of free radicals and reactive oxygen species that bind to the bacterial cell wall and cause bacterial cell 85 

destruction [27]. The CuO nanoparticles are extremely reactive because of their high surface area to volume ratio 86 

which improves their antimicrobial efficiency [6]. The metal oxides show antibacterial properties by generating 87 

reactive oxygen species and free radicals. The oxygen reacts with the CuO and forms cupric ion (Cu2+); the cation 88 

reacts with superoxide ion (O2
¯), leading to oxidative stress. The O2

¯ ion reduces the Cu2+ ion to cuprous ion and 89 

produces hydrogen peroxide (H2O2) which reacts with copper and again produces hydroxyl ion. Similarly, ZnO 90 

nanoparticles also produce H2O2 and O2
¯ ion. The H2O2 penetrates the bacterial cells and causes cellular membrane 91 

damage, lipid peroxidation, and ultimately bacterial cell growth inhibition and bacterial cell destruction by damaging 92 

the cellular components such as deoxyribose nucleic acid and proteins [26, 28, 29]. Supplementation of nano copper 93 

to the poultry diet can improve the daily weight gain, erythrocyte count, and haematocrit level in chicken [30]. 94 

Recently, Kim et al. [31] reported that copper is frequently used as growth promoter in monogastric animals. Copper 95 
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can shift intestinal microbiota in pigs which may be attributed with its antimicrobial activities [32]. It is anticipated 96 

that nanoparticles will become the most appropriate antibacterial drugs in the future. Therefore, this study was 97 

designed to determine the antibacterial effects of ZnO and CuO nanoparticles in S. gallinarum induced infection in 98 

broilers in terms of their hematological, pathological, and immunological parameters.  99 

 100 

Materials and Methods 101 

Ethics approval and consent to participate 102 

The animal care and experimental protocols used in the present study were approved by the Graduate Study 103 

Research Board, in accordance with the guidelines of Institution of Animal Care and Use Committee, University of 104 

Agriculture Faisalabad, Pakistan (approval number: DGS/.7049-52). 105 

Experimental birds and study plan  106 

A total of 90, one-day-old broiler chicks (Hubbard) were selected for this study. The birds were kept under the 107 

same environment and management conditions for the first 18 days. The ZnO and CuO nanoparticles were prepared 108 

at the Department of Physics, University of Agriculture Faisalabad (Pakistan). The chemicals cupric chloride (CuCl2), 109 

zinc sulphate (ZnSO4) and sodium hydroxide (NaOH) were kindly provided by Dr. Muhammad Yasir Javed 110 

(Department of Physics, University of Agriculture Faisalabad, Pakistan) for the preparation of ZnO and CuO 111 

nanoparticles. The CuO nanoparticles were prepared by co-precipitation method as previously documented by 112 

Phiwdang et al. [33] using CuCl2 and NaOH as precursor. Briefly, CuCl2 (1 M) was dissolved in distilled water (1 L) 113 

and constantly stirred at magnetic stirrer until completion dissolution of CuCl2. After, NaOH (1 M) was added gently 114 

drop by drop under vigorous stirring on magnetic stirrer. The black precipitates of CuO were obtained and washed 115 

with distilled water several times. Later, the washed precipitates were dried in oven at 80°C overnight and dried 116 

product was kept in muffle furnace (500°C) for 4 hours. Finally, CuO was crushed into fine powder. The size and 117 

purity of CuO nanoparticles used in the present study were 33.20 nm and 99.9% respectively, as the nanoparticles 118 

were from same batch already reported by our research group [6]. The ZnO nanoparticles were prepared by co-119 

precipitation method as previously documented by Manyasree et al. [34] using ZnSO4 and NaOH as precursor. Briefly, 120 

ZnSO4 (1 M) was dissolved in distilled water (1 L) and constantly stirred at magnetic stirrer for 1 hour. After complete 121 

dissolution of ZnSO4, NaOH (2 M) solution was added drop by drop under continuous stirring conditions for two 122 

hours. Subsequently, a white creamy suspension was formed and was allowed to settle overnight. The precipitate was 123 
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several times with distilled water and dried in the oven at 80°C. During drying, zinc hydroxide is completely converted 124 

into ZnO. The ZnO was kept in the muffle furnace (500°C) for 4 hours. Finally, ZnO was crushed into fine powder. 125 

The size and purity of ZnO nanoparticles used in the present study were 97.5 nm and 99.9% respectively, as the 126 

nanoparticles were from same batch already documented by Bahadur [35]. 127 

The birds were divided (15 birds/group) into six groups: control negative, control positive, T1 (Florfenicol; 50 128 

mg/L drinking water), T2 (ZnO nanoparticles; 25 mg/kg + CuO nanoparticles; 10 mg/kg), T3 (ZnO nanoparticles; 37.5 129 

mg/kg + CuO nanoparticles; 15 mg/kg), and T4 (ZnO nanoparticles; 50 mg/Kg + CuO nanoparticles; 20 mg/Kg). The 130 

birds were maintained in six individual compartments with wood shavings as litter material. On day 19, the birds of 131 

all the groups except the control negative were orally infected with S. gallinarum at a dose of 108 CFU/mL as shown 132 

in the experimental design (Fig. 1). All birds were provided with clean water and commercially available feed ad 133 

libitum throughout the study. The treatments were given to the birds three days post-infection (after the appearance of 134 

clinical signs). 135 

Parameters and data collection 136 

The birds were sacrificed on day 26 and 30 of the study. The blood samples were collected in ethylene diamine 137 

tetra acetic acid vacutainers (LOT: 07072014, Lab Vac, Australia).  138 

Gross pathology and histopathology of spleen, thymus, bursa of Fabricius 139 

Spleen, thymus, and bursa of Fabricius were isolated after sacrifice and inspected for abnormal morphology 140 

changes. The scoring of the congestion was performed using an arbitrary scoring system. The congestion was 141 

described as none (-), mild (+), moderate (++), or severe (+++).  142 

The tissue samples were taken spleen, thymus, and bursa of Fabricius, cut into small pieces of 2-3 cm with a 143 

thickness of 1-2 mm, and placed in containers with 10% neutral buffered formalin solution for fixation, followed by 144 

histopathological examination. The tissue samples were dipped in a series of ethanol solutions with different 145 

concentrations. After the tissue samples were cleaned with xylene-I and xylene-II to remove the dehydrating agent. 146 

Finally, the tissue section slides were prepared, and staining was done. The previously described protocols [36] were 147 

used for the processing of the tissue sections and staining with hematoxylin and eosin stains. The quantitative analysis 148 

of the histopathological slides was analyzed by using QuPathTM 0.2.2. Software. The lymphocytes were counted in 149 

spleen, thymus, and bursa of Fabricius. The congestion percentage was determined in the spleen and thymus. The 150 

interfollicular space in the bursa of Fabricius was also determined.  151 
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Immunological and hematological parameters 152 

The antibody titer against NDV was determined by performing the hemagglutination and hemagglutination 153 

inhibition tests as previously described [37]. The phagocytic activity of the macrophages present in the blood of the 154 

infected birds was determined by a carbon clearance assay, as previously described [38]. 1 ml of Pelican®  Black Indian 155 

No. 4001 was injected into the wing vein of the birds. 0.2 ml of blood was collected at 0, 3, and 15 minutes intervals 156 

and added to 4 ml of 0.1% sodium citrate solution in a 15 ml falcon tube. Centrifuged at 5000 RPM for 4 minutes. 50 157 

µL of supernatant was transferred to a 96 well plate, and the optical density value was determined at 650 nm. The 158 

lymphoproliferative response against avian tuberculin was determined as previously described [39] by injecting 0.1 159 

mL avian tuberculin into the interdigital space of the right claw of the bird and 0.1 mL normal saline into the 160 

interdigital space of the left claw and comparing their immune responses. The hematological parameters (complete 161 

blood count) were determined as previously described [40]. 162 

Statistical analysis 163 

The statistical analysis of the collected data was performed using the complete randomized design through the 164 

analysis of variance technique and Tukey’s test was performed for the comparison of the group mean values using 165 

SAS®  University edition online software SAS 15.1. p values < 0.01 and < 0.05 were considered significantly different. 166 

 167 

Results 168 

Hematological parameters at day 7 and 11 post-infection 169 

A complete blood count analysis of the blood samples infected from S. gallinarum was performed to find the 170 

effects of ZnO and CuO nanoparticles. The antibacterial effect of different levels of the ZnO and CuO nanoparticles 171 

and florfenicol on the S. gallinarum induced infection in the broilers in terms of the hematological parameters is 172 

presented in Table 1.  173 

On day 7 post-infection, the influence of the various levels of ZnO and CuO nanoparticles (T2, T3, T4) on the total 174 

erythrocyte count, basophils, mean corpuscular volume, and mean corpuscular hemoglobin concentration showed no 175 

significant differences with that of the control negative and group T1. The total leukocyte count of T3 and T4 was not 176 

significantly different from group T1, however, significantly different (p < 0.01) from control positive, while that of 177 

T2 was significantly different (p < 0.01) as compared to T1. The hematocrit level of group T1 and groups T2, T3, and 178 
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T4 was not significantly different. The lymphocyte, heterophil, monocyte, and eosinophil percentages, and heterophils 179 

to lymphocyte (H/L) ratio of groups T2, T3, and T4 were not significantly different from that of group T1, however, 180 

lymphocyte percentage of T2, T3, and T4 was found significantly different (p < 0.01) as compared to that of control 181 

positive. At day 11 post-infection, the influence of the various levels of ZnO and CuO nanoparticles (T2, T3, and T4) 182 

on the total erythrocyte count, total leukocyte count, hematocrit level, hemoglobin concentration, basophils, mean 183 

corpuscular hemoglobin, mean corpuscular volume, and mean corpuscular hemoglobin concentration was not 184 

significantly different from that of groups; control negative, control positive, and T1. The heterophil and eosinophil 185 

percentage of groups; T2 and T3 were significantly different (p < 0.01) as compared to that of control positive. The 186 

heterophil, monocyte, and eosinophil percentages of groups T2, T3, and T4 were not significantly different from that 187 

of group T1. The lymphocyte percentage and H/L ratio of groups; T2, T3 and T4 was found significantly different (p < 188 

0.01) to that of control positive and not significantly different to that of groups; control negative and T1. 189 

Immunological parameters 190 

The influence of ZnO and CuO nanoparticles on the immune parameters of the S. gallinarum infected birds was 191 

evaluated in terms of antibody titer against NDV, lymphoproliferative response of lymphocytes, and phagocytic power 192 

of the macrophages. The log antibody titer against NDV (on days 14, 21, and 28) and lymphoproliferative response 193 

of lymphocytes against avian tuberculin (at 24, 48 and 72 hours post injection of avian tuberculin) was not significantly 194 

different in the treatment groups (T1, T2, T3, and T4) including the control negative and control positive as described 195 

in Fig. 2 and Fig. 3 respectively. After 3 minutes, the phagocytic index was significantly (p < 0.01) decreased in the 196 

lower and medium treatment groups T2 and T3 as compared to that of control positive group and not significantly 197 

different to that of T1 as depicted in Fig. 4 (A). However, after 15 minutes, the phagocytic index in all groups treated 198 

with ZnO and CuO nanoparticles was significantly (p < 0.01) decreased as compared to that of control positive group 199 

and not different to that of T1 as depicted in Fig. 4 (B).  200 

Pathological parameters 201 

Gross pathology of spleen, thymus, bursa of Fabricius 202 

The scoring of congestion of spleen, thymus, and bursa of Fabricius are shown in Table 2, Fig. 5, and Fig. 6. At 203 

day 7 and 11 post-infection, the congestion in the spleen and thymus of the control positive was high in comparison 204 

to the control negative and treatment groups (T1, T2, T3, and T4) as shown in Fig. 5 and Fig. 6. 205 

Histopathology of spleen, thymus, bursa of Fabricius 206 
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The congestion, lymphocyte count, and interfollicular bursal space in spleen, thymus, and bursa of Fabricius at 207 

day 7 and 11 post-infection is described in Table 3 and Fig. 7, Fig. 8, and Fig. 9, respectively. At day 7 post-infection, 208 

the congestion and lymphocytic count in the spleen and thymus of the ZnO and CuO nanoparticles treated groups; T2, 209 

T3, and T4 was not significantly different from that of the control negative and T1, however, the congestion and 210 

lymphocytic count of spleen in ZnO and CuO nanoparticles treated groups; T2, T3, and T4 were significantly (p < 0.01) 211 

different from that of the control positive. ZnO and CuO nanoparticles treated groups; T2, T3, and T4 were significantly 212 

different from that of control positive group in terms of congestion (p < 0.01) and lymphocytic count (p < 0.05). The 213 

interfollicular space of bursa of Fabricius in ZnO and CuO nanoparticles treated groups was significantly (p < 0.01) 214 

different from that of control positive group, however, it was found not different to that T1.  At day 11 post-infection, 215 

the congestion in the spleen and thymus of ZnO and CuO nanoparticles treated groups (T2, T3, and T4) was not 216 

significantly different from that of the control negative and T1, however, was significantly (p < 0.01) different from 217 

that of the control positive (Table 3). Congestion and lymphocytic depletion in the spleen and thymus of the control 218 

positive was observed while the ZnO and CuO nanoparticles treated groups showed decreased (p < 0.01) congestion 219 

of spleen and lymphocytic depletion (Fig. 7 and Fig. 8).  220 

 221 

Discussion 222 

Fowl typhoid, caused by gram-negative bacterium S. gallinarum, poses a significant economic burden on the 223 

global poultry industry [28]. Multiple antibiotics such as florfenicol, ciprofloxacin, and enrofloxacin are being used 224 

against S. gallinarum at poultry farms however, the irrational use of these antibiotics created AMR in S. gallinarum. 225 

Morsy et al. [41] reported that ZnO and CuO nanoparticles have no cytotoxic effects in the broiler chickens at low 226 

doses, however, at high dose it can cause cytotoxicity. However, in another study reported that ZnO, CuO, and Ferric 227 

oxide nanocomposite can ameliorate the toxic effects of ochratoxins in broilers and can improve the body weight, 228 

liver, and kidney functions [42]. To address the issue of AMR, this study aimed to assess the antibacterial activity of 229 

ZnO and CuO nanoparticles against S. gallinarum infection in broiler chicken.  230 

The findings of this study highlight the antibacterial potential of nanoparticles as a significant alternative 231 

treatment approach for combating S. gallinarum infection in broiler chickens. In response to S. gallinarum infection 232 

at day 19 with 108 CFU/mL, the clinical signs like huddling, anorexia, depression, pasty yellow diarrhea, and 233 

postmortem lesions including bronzed colored liver, splenomegaly, necrotic foci on the visceral organs (liver and 234 
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heart), and mortality greater than 60% in the birds were observed. These findings are consistent with previous studies 235 

[43-45] where they reported 50% mortality, rough feathers, yellow-green diarrhea, and sunken eyes. The bursa of 236 

Fabricius is very important and unique immune organ responsible for B lymphocytes production and humoral 237 

immunity in birds [46]. Therefore, the bursa of Fabricius was observed and based on evaluation it was noted that after 238 

nanoparticle treatment no congestion in the bursa of Fabricius was observed. The treatment of nanoparticles can 239 

increase the relative weight of bursa of Fabricius [47]. The recovery of the bursa of Fabricius from congestion was 240 

attributed to the antibacterial activity of the combination of nanoparticles [44]. 241 

The total erythrocytic count, total leukocyte count, hemoglobin concentration, and hematocrit level were found 242 

similar in all groups which was also reported in previous studies [48, 49]. The intraperitoneal administered infection 243 

of S. gallinarum causes a significant decrease in hematocrit and hemoglobin concentration as compared to per oral 244 

infection [46]. The hematocrit and hemoglobin was decreased in the S. gallinarum infected birds as compared to the 245 

control negative which was in agreement with another study [50]. An arithmetic decrease in erythrocyte count and 246 

substantial decrease in hemoglobin concentration and hematocrit of the S. gallinarum infected birds was observed. 247 

The decreased hemoglobin and hematocrit level caused anemia in the birds [51]. The anemia in the control positive 248 

might be attributed to the increased ability of the reticuloendothelial system to take up modified erythrocytes [52]. 249 

The increase in the erythrocyte count in the nanoparticles treated groups may be attributed to the efficacy of CuO 250 

nanoparticles, because copper plays a vital role in iron metabolism for hemoglobin synthesis [53] and erythrocyte 251 

production [54]. After inducing S. gallinarum infection, an increased total leukocyte count was observed in the 252 

infected groups which is in line with a previous study [50] because they play a key role in the defense mechanism of 253 

the host and active removal of the bacteria from circulation [55]. The increase in leukocyte count indicates the severity 254 

of infection while CuO nanoparticles reduces the leukocyte count in the blood [56]. After the treatment with ZnO and 255 

CuO nanoparticles, total leukocyte counts decreased. However, the total leukocyte count in the group T3 (day 7 post-256 

infection) was found comparable with that of T1 group treated with florfenicol antibiotic, whereas the leukocyte 257 

number was not different with that of the control negative at the second sampling at day 11  post-infection, which 258 

indicates that nanoparticles have similar efficacy as the antibiotics. 259 

In contrast, Fathi et al. [48] obtained contrasting findings where they observed that nanoparticles had no impact 260 

on the leukocytic count. This discrepancy might be attributed to the induced S. gallinarum infection in our study as 261 

bacterial infections cause an increase in leukocytic count [57]. An increase in the leukocyte count of infected birds 262 
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and the substantial decrease due to nanoparticle treatment is due to the adequate efficacy of the nanoparticles as they 263 

contribute to reducing the leukocytic count [58]. Ahmed et al. [6] also reported that the CuO nanoparticles decreased 264 

the leukocyte count in birds infected with E. coli and elaborates on the efficacy of ZnO and CuO nanoparticles against 265 

S. gallinarum infection in broilers. A significant increase in heterophil percentage was observed in the control positive 266 

as compared to the control negative. The nanoparticles treatment can decrease the heterophils percentage. Heterophilia 267 

in the control positive could be an indication of acute inflammatory degenerative changes in the internal organs [43]. 268 

The stress can also be linked with the impaired immunity of the birds. The infection of S. gallinarum can cause the 269 

increased level of corticosterone [59]. The heterophils percentage can be increased with increased level of 270 

corticosterone in the blood [60]. However, the treatment groups T1, T2, and T3 showed a significantly decreased 271 

heterophil percentage as compared to the control positive, while the heterophil percentage in the groups (T2, T3, and 272 

T4) treated with nanoparticles was found comparable to group T1. However, group T3 showed a lower heterophil 273 

percentage as compared to T2 and T4 indicating that the group T3 may have the minimum inflammatory degenerative 274 

changes which endorse the efficacy of treatment with ZnO and CuO nanoparticles at the levels of 37.5 + 15 mg/kg/d. 275 

At day 7 post-infection, the decreased H/L ratio in the nanoparticle-treated groups might be attributed to the efficacy 276 

of nanoparticles in the alleviation of stress due to the S. gallinarum infection. The leukocytosis and heterophilia in the 277 

control positive could be due to the inflammatory response to the S. gallinarum induced tissue damage. The decreased 278 

leukocyte count and heterophil percentage in the nanoparticle-treated groups indicates the improved health status of 279 

the birds and antibacterial activity of ZnO and CuO nanoparticles which cause a decrease in bacterial load and 280 

inflammatory degeneration in the infected birds. 281 

The CuO nanoparticles can inhibit the growth of NDV [61]. The nonsignificant difference between all the 282 

treatments in NDV antibody titer at day 14, 21, and 27 in the current study was endorsed by previous in vivo studies 283 

[62]. On the other hand, a previous study reported that the humoral immune response was increased when using ZnO 284 

nanoparticles [63]. The nonsignificant titers against NDV in the present study could be due to the induced S. 285 

gallinarum infection. The NDV antibody titer was highest in group T2 receiving a low dose of nanoparticles and lowest 286 

in group T4 receiving a high dose of nanoparticles which is in line with the previous study reported by Morsy et al. 287 

[41]. The low NDV antibody titer in group T4 may be attributed to the oxidative stress induced by the high level of 288 

nanoparticles [64]. 289 
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The macrophage phagocytic activity of the nanoparticle-treated groups T2, T3, and T4 were enhanced. 290 

Macrophages are involved in the initiation of cellular and humoral immune responses by activating the B and T 291 

lymphocytes [38]. Copper plays an important role in the production of arachidonic acid and prostaglandin which 292 

enhances the production of macrophages [65]. The minimum light absorption percentage in T3 indicates the increased 293 

phagocytic activity of macrophages which may be attributed to the efficacy of the nanoparticles dose level in T3. The 294 

decreased light absorption in the nanoparticle-treated groups demonstrates the increased phagocytic activity of the 295 

macrophages indicating improved immune status of the nanoparticle-treated groups. 296 

The histopathological examination of spleen, thymus, and bursa of Fabricius in our study indicated lymphocytic 297 

depletion and congestion in the S. gallinarum infected birds which also endorsed by a previous in vivo study [66]. The 298 

histological sections of spleen, thymus and bursa of Fabricius showed lymphocytic depletion and congestion which is 299 

in line with the previous studies [67-69]. The lymphocytic depletion in the S. gallinarum infected groups may be 300 

attributed to immunosuppression in the presence of the S. gallinarum induced infection [50]. In our study, the 301 

lymphocyte count in spleen, thymus and bursa of Fabricius was increased while the congestion was decreased after 302 

treatment with ZnO and CuO nanoparticles in the S. gallinarum induced infected birds which indicates the efficacy of 303 

the nanoparticle treatment. 304 

In conclusion, ZnO and CuO nanoparticles at the dose level of 37.5 + 15 mg/kg/d and 50 + 20 mg/kg/d, 305 

respectively, showed optimum therapeutic activity against S. gallinarum infection in broilers. As the two dose levels 306 

show equal therapeutic results against S. gallinarum, the lower dose 37.5 + 15 mg/kg/d recommended. 307 
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Table 1: Antibacterial effect of various levels of mixed zinc oxide (ZnO) and copper oxide (CuO) nanoparticles, and florfenicol against S. gallinarum induced 505 
infection in broiler in terms of hematological parameters at day 7 and 11 post-infection 506 

 507 

 

Hematological Parameters 

Treatments 

 

p-value Control Negative Control Positive 

Florfenicol mg/L Nanoparticle levels of ZnO and CuO mg/kg/d 

T1 

(50) 

T2 

(25 + 10) 

T3 

(37.5 + 15) 

T4 

(50 + 20) 

S1 

TEC (×106 /µL) 5.57 ± 0.70a 4.04 ± 0.30a 3.81 ± 0.47a 4.5 ± 0.47a 4.98 ± 1.60a 4.6 ± 0.33a 0.098 

TLC (×103 /µL) 4.47 ± 0.51a 11.9 ± 0.98b 7.03 ± 0.55c 10.03 ± 0.81bd 9.16 ± 0.72cd 8.15 ± 1.55cd 0.000 

Hematocrit Level (%) 32.25 ± 1.84a 22.6 ± 3.54b 27.5 ± 3.67ab 24.0 ± 2.44b 26.0 ± 4.35ab 22.7 ± 2.52b 0.003 

Hemoglobin Concentration (µg/dL) 10.4 ± 0.60a 8.76 ± 0.46b 10.3 ± 3.67a 8.4 ± 0.84b 8.1 ± 0.58b 7.8 ± 0.20b 0.000 

Lymphocytes (%) 55.02 ± 5.80a 31.34 ± 3.18b 49.67 ± 2.33a 48.7 ± 3.25a 51.74 ± 5.31a 50.9 ± 1.55a 0.000 

Heterophils (%) 29.13 ± 1.60a 42.22 ± 4.86b 34.19 ± 2.29a 34.21 ± 1.54a 33.04 ± 4.57a 34.98 ± 2.76ab 0.006 

Monocytes (%) 5.55 ± 0.58a 15.29 ± 1.55b 8.97 ± 1.07ac 13.68 ± 4.86bc 11.73 ± 3.39bc 11.29 ± 0.52ac 0.001 

Eosinophils (%) 0.53 ± 0.04a 1.29 ± 0.25a 1.65 ± 0.18ab 2.58 ± 0.80b 2.74 ± 0.96b 1.79 ± 0.29ab 0.000 

Basophils (%) 1.16 ± 0.25a 0.51 ± 0.13a 0.68 ± 0.02a 0.81 ± 0.50a 0.74 ± 0.78a 1.01 ± 0.62a 0.636 

Heterophil Lymphocyte Ratio 0.53 ± 0.09a 1.35 ± 0.27b 0.68 ± 0.02a 0.7 ± 0.04a 0.64 ± 0.14a 0.68 ± 0.07a 0.000 

MCH (pg) 18.72 ± 1.71a 21.7± 1.42ab 27.22 ± 2.91b 18.78 ± 3.47a 17.01 ± 4.91a 16.9 ± 1.48a 0.004 

MCV (fL) 58.33 ± 9.78a 55.79 ± 5.13a 73.04 ± 16.65a 53.58 ± 8.76a 53.61 ± 9.74a 49.27 ± 8.09a 0.540 

MCHC (g/dL) 32.34 ± 3.53a 39.13 ± 6.90a 37.89 ± 6.61a 35.01 ± 1.91a 31.43 ± 3.50a 34.63 ± 3.06a 0.255 
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S2 

TEC (×106 /µL) 5.6 ± 0.70a 4.2 ± 0.25a 4.44 ± 0.73a 4.38 ± 1.69a 3.97 ± 1.98a 3.99 ± 0.63a 0.162 

TLC (×103 /µL) 6.09 ± 0.69a 6.1 ± 0.43a 5.24 ± 0.21a 4.94 ± 0.74a 4.87 ± 1.43a 6.0 ± 0.46a 0.068 

Hematocrit Level (%) 30.75 ± 4.04a 29.0 ± 3.60a 25.0 ± 6.63a 32.8 ± 2.32a 29.0 ± 2.44a 28.0 ± 1.73a 0.379 

Hemoglobin Concentration (µg/dL) 10.2 ± 0.34a 8.93 ± 0.46a 10.25 ± 0.46a 10.24 ± 0.77a 9.2 ± 1.23a 10.35 ± 0.46a 0.065 

Lymphocytes (%) 56.04 ± 5.33a 31.54 ± 3.04b 49.09 ± 5.49a 49.0 ± 4.38a 49.98 ± 0.74a 48.96 ± 4.69a 0.000 

Heterophils (%) 25.37 ± 2.67a 49.09 ± 5.49b 33.11 ± 1.73c 34.48 ± 2.00c 34.96 ± 2.01c 37.06 ± 3.55bc 0.000 

Monocytes (%) 8.1 ± 1.65a 13.51 ± 2.59b 8.78 ± 2.33ab 12.06 ± 2.70ab 11.19 ± 2.11ab 10.74 ± 1.32ab 0.030 

Eosinophils (%) 0.79 ± 0.13ab 1.89 ± 0.38b 2.03 ± 0.09ac 3.21 ± 0.68c 2.42 ± 0.74ac 1.87 ± 0.69ab 0.000 

Basophils (%) 1.26 ± 0.40a 0.92 ± 0.12a 0.71 ± 0.06a 1.23 ± 0.31a 1.44 ± 0.94a 1.35 ± 0.49a 0.224 

Heterophil Lymphocyte Ratio 0.68 ± 0.07a 0.45 ± 0.09b 0.67 ± 0.05ac 0.71 ± 0.09ac 0.69 ± 0.03ac 0.76 ± 0.13c 0.000 

MCH (pg) 18.37 ± 2.83a 21.29 ± 1.83a 23.42 ± 4.59a 24.56 ± 7.82a 23.93 ± 6.30a 26.19 ± 3.77a 0.198 

MCV (fL) 55.69 ± 13.46a 69.05 ± 8.87a 58.36 ± 27.39a 78.66 ± 24.27a 75.97 ± 23.06a 71.16 ± 13.67a 0.406 

MCHC (g/dL) 33.4 ± 3.58a 31.0 ± 2.44a 42.32 ± 10.38a 31.26 ± 2.73a 31.75 ± 3.90a 37.02 ± 2.58a 0.114 

a, b, c Mean Values in rows with various superscripts are significantly different (p < 0.01) and (p < 0.05), S1 (day 7), S2 (day 11) post-infection sampling 508 
TEC, total erythrocyte count; TLC, total leukocyte count; MCH, mean corpuscular hemoglobin; MCV, mean corpuscular volume; MCHC, mean corpuscular 509 
hemoglobin concentration.  510 
 511 

 512 

 513 

 514 

 515 

 516 
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 517 

Table 2: Antibacterial effect of various levels of mixed zinc oxide (ZnO) and copper oxide (CuO) nanoparticles, and florfenicol on S. gallinarum induced infection 518 

in broiler in terms of scoring of gross pathological lesions (congestion) of thymus, spleen, and bursa of Fabricius at day 7 and 11 post-infection. 519 

Organ 

Treatments 

Control Negative Control Positive 

Florfenicol mg/L Nanoparticle levels of ZnO and CuO mg/kg/d 

T1 

(50) 

T2 

(25 + 10) 

T3 

(37.5 + 15) 

T4 

(50 + 20) 

S1 

Spleen - +++ ++ + ++ ++ 

Thymus - +++ ++ ++ ++ + 

Bursa of 

Fabricius 

- ++ - + ++ + 

S2 

Spleen - ++ - + - - 

Thymus - ++ - + - - 

Bursa of 

Fabricius 

- ++ - - - - 

No congestion (-), mild congestion (+), moderate congestion (++), severe congestion (+++). S1 (day 7), S2 (day 11) post-infection sampling 520 

 521 

 522 

 523 
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Table 3: Antibacterial effect of various levels of mixed zinc oxide (ZnO) and copper oxide (CuO) nanoparticles, and florfenicol on S. gallinarum induced infection 524 

in broiler in terms of quantitative histopathology of thymus, spleen, and bursa of Fabricius at day 7 and day 11 post-infection 525 

Organ Parameters 

Treatment 

 

p-value Control Negative Control Positive 

Florfenicol mg/L Nanoparticle levels of ZnO and CuO mg/kg/d 

T1 

(50) 
T2 

(25 + 10) 
T3 

(37.5 + 15) 
T4 

(50 + 20) 

S1 

Spleen 

Congestion % 4.33 ± 7.50a 38.02 ± 7.52b 20.62 ± 1.14c 13.38 ± 0.73ac 10.24 ± 0.48ac 13.5 ± 2.74ac 0.000 

Lymphocytes 1179.67 ± 165.32a 631.33 ± 178.55b 983.33 ± 40.69a 957.67 ± 40.00a 1121.67 ± 137.90a 1085 ± 58.59a 0.001 

Thymus 

Congestion % 6.00 ± 2.00a 41.42 ± 6.30b 19.12 ± 5.80c 20.65 ± 5.07c 14.6 ± 1.80ac 22.34 ± 1.51c 0.000 

Lymphocytes 1221.67 ± 241.61a 703.33 ± 85.13b 1055 ± 279.77ab 915 ± 112.80ab 1011.33 ± 26.00ab 1020 ± 118.29ab 0.051 

Bursa of 

Fabricius 

Interfollicular 

Space 

1.06 ± 0.12a 3.98 ± 0.30b 2.66 ± 1.07ab 3.98 ± 0.75b 2.7 ± 0.81ab 3.1 ± 0.58b 0.002 

Lymphocytes 1103 ± 197.40a 662.66 ± 86.10b 858 ± 115.90ab 968 ± 53.20ab 994 ± 55.60ab 996.67 ± 148.90a 0.012 

S2 

Spleen 

Congestion % 3.66 ± 2.08a 41.99 ± 9.37b 15.38 ± 5.56a 15.51 ± 3.19a 13.07 ± 1.23a 12.5 ± 1.23a 0.000 

Lymphocytes 1331.67 ± 334.33a 862.66 ± 92.52a 1130.33 ± 390.37a 959.33 ± 50.00a 1039.67 ± 187.70a 962 ± 43.55a 0.276 

Thymus 

Congestion % 3.66 ± 2.08a 41.99 ± 9.37b 15.38 ± 5.56a 15.51 ± 3.19a 13.07 ± 1.23a 12.5 ± 1.23a 0.000 

Lymphocytes 1192.33 ± 335.90a 700 ± 92.70a 1109.67 ± 401.50a 973 ± 106.60a 1057 ± 139.20a 1036.33 ± 192.30a 0.268 

Bursa of 

Fabricius 

Interfollicular 

Space 

0.94 ± 0.10a 4.09 ± 0.30b 2.38 ± 1.20ab 2.68 ± 1.10ab 2.17 ± 0.10ab 2.34 ± 0.10ab 0.003 

Lymphocytes 1133 ± 352.20a 747 ± 78.00a 927.66 ± 64.40a 630.67 ± 393.90a 960 ± 175.00a 1102.33 ± 283.80a 0.200 

a, b, c Mean Values in rows with various superscripts are significantly different (p < 0.01) and (p < 0.05), S1 (day 7), S2 (day 11) post-infection sampling 526 
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 527 

Fig. 1: Experimental design operation layout. 528 ACCEPTED
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 529 

Fig. 2: New castle’s disease (NDV) titer of S. gallinarum infected birds treated with florfenicol and zinc oxide (ZnO), 530 

and copper oxide (CuO) nanoparticles. Groups: Control Negative (No infection, No Treatment); Control Positive (S. 531 

gallinarum infection, No Treatment); T1 (S. gallinarum infection and florfenicol treatment at dose rate 50 mg/L in 532 

drinking water); T2 (S. gallinarum infection and ZnO + CuO nanoparticles treatment at dose rate 25 + 10 mg/Kg/d); 533 

T3 (S. gallinarum infection and ZnO + CuO nanoparticles treatment at dose rate 37.5 + 15 mg/Kg/d); T4 (S. gallinarum 534 

infection and ZnO + CuO nanoparticles treatment at dose rate 37.5 + 15 mg/Kg/d). Mean ± SD, n = 3 each group. 535 

 536 

 537 
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 539 

Fig. 3: Lymphoproliferative response (skin thickness in mm) to injection avian tuberculin in S. gallinarum infected 540 

birds treated with florfenicol, zinc oxide (ZnO), and copper oxide (CuO) nanoparticles. Groups: Control Negative (No 541 

infection, No Treatment); Control Positive (S. gallinarum infection, No Treatment); T1 (S. gallinarum infection and 542 

florfenicol treatment at dose rate 50 mg/L in drinking water); T2 (S. gallinarum infection and ZnO + CuO nanoparticles 543 

treatment at dose rate 25 + 10 mg/Kg/d); T3 (S. gallinarum infection and ZnO + CuO nanoparticles treatment at dose 544 

rate 37.5 + 15 mg/Kg/d); T4 (S. gallinarum infection and ZnO + CuO nanoparticles treatment at dose rate 37.5 + 15 545 

mg/Kg/d). Mean ± SD, n = 3 each group. 546 

 547 

 548 

 549 

 550 
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 552 

Fig. 4: Phagocytic activity of lymphocytes via carbon clearance assay of S. gallinarum infected birds treated with 553 

florfenicol, zinc oxide (ZnO), and copper oxide (CuO) nanoparticles. (A) Phagocytic index at 03 minutes. (B) 554 

Phagocytic index at 15 minutes. Groups: Control Negative (No infection, No Treatment); Control Positive (S. 555 

gallinarum infection, No Treatment); T1 (S. gallinarum infection and florfenicol treatment at dose rate 50 mg/L in 556 

drinking water); T2 (S. gallinarum infection and ZnO + CuO nanoparticles treatment at dose rate 25 + 10 mg/Kg/d); 557 

T3 (S. gallinarum infection and ZnO + CuO nanoparticles treatment at dose rate 37.5 + 15 mg/Kg/d); T4 (S. gallinarum 558 

infection and ZnO + CuO nanoparticles treatment at dose rate 37.5 + 15 mg/Kg/d). Mean ± SD, n = 3 each group, 559 

Values with different letters (a, b, c) indicate a significantly difference (p < 0.01) and (p < 0.05) phagocytic index.  560 

 561 

  562 
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 563 

Fig. 5: Antibacterial effect of various levels of mixed zinc oxide (ZnO) and copper oxide (CuO) nanoparticles, and 564 

florfenicol on S. gallinarum induced infection in broiler in terms of gross pathology of spleen, thymus, and bursa of 565 

Fabricius at day 7 post-infection. Groups: Control Negative (No infection, No Treatment); Control Positive (S. 566 

gallinarum infection, No Treatment); T1 (S. gallinarum infection and florfenicol treatment at dose rate 50 mg/L in 567 

drinking water); T2 (S. gallinarum infection and ZnO + CuO nanoparticles treatment at dose rate 25 + 10 mg/Kg/d); 568 

T3 (S. gallinarum infection and ZnO + CuO nanoparticles treatment at dose rate 37.5 + 15 mg/Kg/d); T4 (S. gallinarum 569 

infection and ZnO + CuO nanoparticles treatment at dose rate 37.5 + 15 mg/Kg/d). 570 
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 571 

Fig. 6: Antibacterial effect of various levels of mixed zinc oxide (ZnO) and copper oxide (CuO) nanoparticles, and 572 

florfenicol on S. gallinarum induced infection in broiler in terms of gross pathology of spleen, thymus, and bursa of 573 

Fabricius at day 11 post-infection. Groups: Control Negative (No infection, No Treatment); Control Positive (S. 574 

gallinarum infection, No Treatment); T1 (S. gallinarum infection and florfenicol treatment at dose rate 50 mg/L in 575 

drinking water); T2 (S. gallinarum infection and ZnO + CuO nanoparticles treatment at dose rate 25 + 10 mg/Kg/d); 576 

T3 (S. gallinarum infection and ZnO + CuO nanoparticles treatment at dose rate 37.5 + 15 mg/Kg/d); T4 (S. gallinarum 577 

infection and ZnO + CuO nanoparticles treatment at dose rate 37.5 + 15 mg/Kg/d).  578 
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 580 

Fig. 7: Antibacterial effect of various levels of mixed zinc oxide (ZnO) and copper oxide (ZnO) nanoparticles, and 581 

florfenicol on S. gallinarum induced infection in broiler in terms of histopathology of spleen. Red arrow indicates 582 

congestion, black arrow indicates lymphocytic depletion. Groups: Control Negative (No infection, No Treatment); 583 

Control Positive (S. gallinarum infection, No Treatment); T1 (S. gallinarum infection and florfenicol treatment at dose 584 

rate 50 mg/L in drinking water); T2 (S. gallinarum infection and ZnO + CuO nanoparticles treatment at dose rate 25 + 585 

10 mg/Kg/d); T3 (S. gallinarum infection and ZnO + CuO nanoparticles treatment at dose rate 37.5 + 15 mg/Kg/d); T4 586 

(S. gallinarum infection and ZnO + CuO nanoparticles treatment at dose rate 37.5 + 15 mg/Kg/d). 587 
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 588 

Fig. 8: Antibacterial effect of various levels of mixed zinc oxide (ZnO) and copper oxide (CuO) nanoparticles, and 589 

florfenicol on S. gallinarum induced infection in broiler in terms of histopathology of thymus. Red arrow indicates 590 

congestion, black arrow indicates lymphocytic depletion. Groups: Control Negative (No infection, No Treatment); 591 

Control Positive (S. gallinarum infection, No Treatment); T1 (S. gallinarum infection and florfenicol treatment at dose 592 

rate 50 mg/L in drinking water); T2 (S. gallinarum infection and ZnO + CuO nanoparticles treatment at dose rate 25 + 593 

10 mg/Kg/d); T3 (S. gallinarum infection and ZnO + CuO nanoparticles treatment at dose rate 37.5 + 15 mg/Kg/d); T4 594 

(S. gallinarum infection and ZnO + CuO nanoparticles treatment at dose rate 37.5 + 15 mg/Kg/d).  595 
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 596 

Fig. 9: Antibacterial effect of various levels of mixed zinc oxide (ZnO) and copper oxide (CuO) nanoparticles, and 597 

florfenicol on S. gallinarum induced infection in broiler in terms of histopathology of bursa of Fabricius. Yellow arrow 598 

indicates interfollicular space, black arrow indicates lymphocytic depletion. Groups: Control Negative (No infection, 599 

No Treatment); Control Positive (S. gallinarum infection, No Treatment); T1 (S. gallinarum infection and florfenicol 600 

treatment at dose rate 50 mg/L in drinking water); T2 (S. gallinarum infection and ZnO + CuO nanoparticles treatment 601 

at dose rate 25 + 10 mg/Kg/d); T3 (S. gallinarum infection and ZnO + CuO nanoparticles treatment at dose rate 37.5 602 

+ 15 mg/Kg/d); T4 (S. gallinarum infection and ZnO + CuO nanoparticles treatment at dose rate 37.5 + 15 mg/Kg/d). 603 

 604 ACCEPTED




