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Abstract 5 

This study estimated the heritabilities (h2) and genetic and phenotypic correlations between reproductive traits, 6 

including calving interval (CI), age at first calving (AFC), gestation length (GL), number of artificial 7 

inseminations per conception (NAIPC), and carcass traits, including carcass weight (CWT), eye muscle area 8 

(EMA), backfat thickness (BF), and marbling score (MS) in Korean Hanwoo cows. In addition, the accuracy of 9 

genomic predictions of breeding values was evaluated by applying the genomic best linear unbiased prediction 10 

(GBLUP) and the weighted GBLUP (WGBLUP) method. The phenotypic data for reproductive and carcass traits 11 

were collected from 1,544 Hanwoo cows, and all animals were genotyped using Illumina Bovine 50K SNP chip. 12 

The genetic parameters were estimated using a multi-trait animal model using the MTG2 program. The estimated 13 

h2 for CI, AFC, GL, NAIPC, CWT, EMA, BF, and MS were 0.10, 0.13, 0.17, 0.11, 0.37, 0.35, 0.27, and 0.45, 14 

respectively, according to the GBLUP model. The GBLUP accuracy estimates ranged from 0.51 to 0.74, while the 15 

WGBLUP accuracy estimates for the traits under study ranged from 0.51 to 0.79. Strong and favorable genetic 16 

correlations were observed between GL and NAIPC (0.61), CWT and EMA (0.60), NAIPC and CWT (0.49), AFC 17 

and CWT (0.48), CI and GL (0.36), BF and MS (0.35), NAIPC and EMA (0.35), CI and BF (0.30), EMA and MS 18 

(0.28), CI and AFC (0.26), AFC and EMA (0.24), and AFC and BF (0.21). The present study identified low to 19 

moderate positive genetic correlations between reproductive and carcass weight traits, suggesting that a heavier 20 

body weight may lead to a longer CI, AFC, GL, and NAIPC. The moderately positive genetic correlation between 21 

CWT and AFC, and NAIPC, with a phenotypic correlation of nearly zero, suggesting that the genotype-22 

environment interactions are more likely to be responsible for the phenotypic manifestation of these traits. As a 23 

result, the inclusion of these traits by breeders as selection criteria may present a good opportunity for developing 24 

a selection index to increase the response to the selection and identification of candidate animals, which can result 25 

in significantly increased profitability of production systems. 26 

Keywords: Carcass traits; Correlation; Hanwoo; Heritability; Reproductive traits. 27 

 28 

 29 

 30 
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Introduction 31 

Hanwoo is one of the oldest autochthonous cattle breeds in the world. Up to the 1960s, it was used primarily 32 

for farming on the Korean peninsula [1]. The Hanwoo has steadily been converted by Korean farmers from 33 

agricultural animals to beef cattle since the 1960s. The meat of choice in recent years has been locally raised 34 

Korean cattle, and it is priced accordingly. Hanwoo beef is renowned for its thick marbling, flavorful beefiness, 35 

and somewhat sweet flavor. It is also healthier than meat from other cattle breeds because it contains more omega-36 

3 fatty acids with less cholesterol [2]. 37 

Reproduction traits play a vital role in the beef cattle industry as they directly influence the efficiency and 38 

profitability of production systems. Key reproductive traits, such as calving interval, age at first calving, gestation 39 

length, and number of artificial inseminations per conception, are of great importance in beef cattle breeding 40 

programs. These traits not only affect the reproductive performance of individual animals but also have significant 41 

impacts on overall herd productivity and management. A shorter calving interval enables more frequent calf 42 

production, leading to increased productivity and potential economic gains. It also facilitates efficient management 43 

practices such as grouping calves for marketing and optimizing nutrition management. Age at first calving 44 

influences lifetime productivity and profitability, as early maturing females have an extended reproductive 45 

lifespan, resulting in a higher cumulative number of calves produced. Achieving optimal age at first calving 46 

maximizes heifer utilization and minimizes costs associated with delayed breeding. Gestation length, influencing 47 

reproductive efficiency and overall management, demands accurate knowledge for optimal calving planning, 48 

timely calving assistance, postpartum care. Furthermore, comprehending the genetic control of gestation length 49 

informs breeding strategies to achieve desired calving seasons and synchronization protocols. The number of 50 

artificial inseminations per conception is crucial for reproductive success, with higher conception rates and fewer 51 

inseminations reducing costs while expediting genetic progress through more efficient use of superior sires. 52 

Improving fertility and reducing artificial inseminations enhance reproductive performance and drive increased 53 

profitability in beef cattle operations [3]. Challenges such as low reproductive capacity and infertility can result 54 

in extended durations between calvings, requiring additional interventions such as extra inseminations, increased 55 

veterinary attention, and hormonal treatments [4]. These interventions can disrupt current and subsequent 56 

lactations, leading to decreased productivity.  57 

In cow breeding systems, the breed, sex, class, and location affect reproduction differently [5]. The outstanding 58 
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performance of male and female reproduction is a requirement for effective beef production techniques. 59 

Successfully incorporating reproductive features into genetic improvement projects requires advances in analysis 60 

techniques and whole-herd reporting [5]. The EBV and the reliability of anticipated breeding values (EBVs) are 61 

critical for selecting superior offspring to replace the present generation. The reliability of EBVs can be influenced 62 

by several factors, including selection intensity, pedigree errors, and generation interval [6]. According to the most 63 

recent studies, reproduction should be prioritized in a traditional cow-calf operation to maximize profitability. 64 

Even in a fully integrated cattle farm, reproduction necessitates an equal emphasis on attributes related to 65 

consumption and output. Genomic selection can give a large boost to the existing rates of genetic gain for beef by 66 

enhancing the accuracy of reproductive traits. The problem for cattle breeding is to improve the genetic variations 67 

identified by genomic estimations for those aspects of high genetic value that have less precision at the time of 68 

selection. The accuracy of genomic selection is currently poorer in beef cattle than in dairy cattle because of the 69 

relatively limited sample size with phenotypes and genotypes used to refine genomic prediction equations. For 70 

common heritable features, such as female reproductive traits, additional genotyped and phenotyped animals are 71 

needed to improve the accuracy of genomic predictions in beef cattle. 72 

The Korean beef sector is seeing increased demand for genetically improving carcass qualities. The key 73 

qualities in the Hanwoo breeding program that were chosen and included in a selection index to boost the 74 

profitability of the meat industry were the carcass weight (CWT), back fat thickness (BF), eye muscle area (EMA), 75 

and marbling score (MS). 76 

The genetic architecture of economically significant traits has been investigated regularly across many cattle 77 

populations since genotyping tools and enhanced genetic evaluation methodology emerged. Genome-wide 78 

association analyses have recently been used to find single nucleotide polymorphisms (SNPs) associated with 79 

reproduction traits in cows [7]. 80 

The correlations generally indicate how closely two traits are related [8]. A deeper knowledge of the common 81 

biological pathways and the causation linkages between two traits may be achieved by the genetic correlation, 82 

which explains the genetic relationship between two traits [9]. A strong correlation between two variables indicates 83 

their strong relationships and vice versa [10]. Typically, the correlation of the breeding values of traits is used to 84 

define the genetic correlation [11]. The genes contributing to the traits are typically co-inherited when two traits 85 

are significantly genetically connected. The phenotypic and genetic correlations are powerful tools for predicting 86 
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how one trait would respond to selection due to selection on another [8]. When selecting for overall merit 87 

incorporating multiple traits, the genetic correlation reflects the degree to which two traits are affected by the same 88 

genes or genes present within the same chromosome. According to calculations of the genetic correlation between 89 

two traits, selection for one trait may indirectly affect the genetic response for the other trait [12]. The pleiotropy 90 

of genes is the leading cause of the correlation, but linkage disequilibrium can also play a role [11]. A thorough 91 

understanding of the genetic variation of economically significant reproduction and production traits and precise 92 

estimation of genetic and phenotypic correlations of economically significant traits are also necessary for 93 

establishing effective genetic improvement programs [13]. Nevertheless, the genetic and phenotypic relationships 94 

between the reproductive and carcass traits of Korean Hanwoo cattle are poorly understood. The genetic 95 

parameters, genomic prediction accuracy, and correlations (phenotypic and genetic) among reproductive and 96 

carcass traits in Hanwoo cows were calculated to achieve these goals. 97 

 98 

Materials and Methods 99 

Animal phenotypes 100 

The data were collected using an existing database from 1,544 Hanwoo cows born between 2007 and 2020 and 101 

slaughtered between 2018 and 2022 and were part of nine (9) local livestock farms spread over the 102 

Gyeongsangbuk-do region in South Korea. All cows were slaughtered between 24 and 178 months of age. The 103 

analysis included reproductive traits, such as calving interval (CI), age at first calving (AFC), gestation length 104 

(GL), and the number of artificial inseminations per conception (NAIPC), as well as the carcass traits like carcass 105 

weight (CWT), eye muscle area (EMA), back fat thickness (BF), and marbling score (MS). The Animal Care and 106 

Use Committee’s permission was not required for this study because all the data were obtained from the existing 107 

database. After a quality assessment, the remaining data included the values for CI ranging from 242 to 601 days, 108 

AFC between 499 and 999 days, GL between 252 and 337 days, CWT between 160 and 541 kg, EMA between 109 

22 and 131 cm2, BF between 2 and 39 mm, and MS scores between 1 and 9. The records of animals with a NAIPC 110 

above four were eliminated from the dataset. The Korean carcass grading procedure by the National Livestock 111 

Cooperatives Federation was used to record the phenotypic data for carcass traits, including CWT, EMA, BF, and 112 

MS. The CWT was measured on samples taken after 24 hours postmortem at the end of refrigeration. EMA was 113 
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measured using a dot-grid method with a cross-sectional slice between the 13th rib and the 1st lumbar vertebrae 114 

perpendicular to the vertebral column, where BF was also measured. A visual assessment of the marbling score 115 

was conducted using a categorical system of nine levels, based on the Korean Livestock Products Grading 116 

Guideline, ranging from 1 (no marbling) to 9 (high marbling). The details of phenotypic distribution information 117 

for the studied animals are presented in Fig. 1. 118 

Genotypic data 119 

The 1,544 Hanwoo cows used in this study were genotyped using Illumina Bovine 50K SNP Chip (Illumina 120 

Inc., San Diego, CA, USA), in which 52,116 SNPs were embedded. The blood samples collected by veterinarians 121 

were used to obtain the DNA. SNPs located on sex chromosomes and with unknown and duplicate positions were 122 

removed for further quality control procedures. Several QC thresholds were set to remove poor-quality SNPs for 123 

further analysis. SNPs were discarded from the analysis when the SNP call rate was less than 90%, individuals 124 

with a genotyping call rate less than 90%, and minor allele frequency (MAF) was less than 1% (monomorphic). 125 

The genotype frequency significantly deviated (p < 0.000001) from Hardy–Weinberg Equilibrium (HWE). The 126 

identity-by-state (IBS) test was performed to determine if there were similar individuals or genotyping errors in 127 

the datasets. The pair of individuals showing a similarity rate >99% indicates an identical animal or error in 128 

genotyping. The entire QC process and IBS test were performed through PLINK v1.9 [14]. Furthermore, the 129 

missing alleles were imputed using Beagle v5.4 software [15]. After IBS and QC, 1,526 animals with genotypes 130 

of 41,445 SNPs were available for further analysis. 131 

Statistical analysis 132 

Genomic best linear unbiased prediction (GBLUP) 133 

The dataset fit for an animal model with a genomic relationship matrix was performed to obtain the breeding 134 

values, including 1,103 complete records of all eight traits. The birth year and birth season were combined into 135 

one composite fixed effect. The fixed covariate of age at slaughter was also fitted with traits. The additive genetic 136 

effect of the animal was fitted as a random genetic component in the model. The genomic estimated breeding 137 

values (GEBV) were predicted using MTG2 v2.2 computer program [16]. The multi-trait animal model was 138 

implemented as follows [17]:  139 
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y = Xb + Zu + e 140 

where y represents the vector of phenotypic records (trait) for an n-animal sample; Xb is the fixed effects [18]; 141 

Zu is the overall marker loci which are assumed to equal the vector of breeding values (a); e is the vector of 142 

random residual effect which is assumed to be normally distributed with N (0, Iσe
2). In addition, var(u) = Gσu

2 143 

where σu
2 is the genetic variance, and G denotes the genomic relationship matrix (GRM), which was constructed 144 

using the following equation [17]: 145 

G =
(M − P)(M − P)′

2 ∑ pi(1 − pi)
n
i=1

 146 

where the marker matrix M has dimensions of n × m; n is the number of individuals; m is the number of markers 147 

used. The element of the P matrix was calculated using the formula, Pi  = 2 (Pi – 0.5), where Pi represents the 148 

minor allele frequency of the marker at locus i. (MP) represents the incidence matrix (Z) for markers. 149 

The genomic relationship matrix (GRM) was constructed using the genome-wide complex trait analysis (GCTA) 150 

tools developed by Yang [19], which effectively retains the genomic relationship between animals [17]. 151 

Weighted genomic best linear unbiased prediction (WGBLUP) 152 

The WGBLUP model and inferences were the same as the above-described GBLUP technique, which had a 153 

different way of constructing the matrix G. The G-matrix above was developed assuming that each SNP explains 154 

the same proportion of genetic variance [20]. Wang [21] introduced the WGBLUP method and used the weighted 155 

G (G*) for significant SNPs with comparatively substantial effects. This genomic relationship matrix G* was 156 

constructed as follows [17]: 157 

G =
ZDZ′

2 ∑ pi(1 − pi)
n
i=1

 158 

where Z, 𝑝𝑖, and n are the same as GBLUP, and D is the diagonal matrix in the WGBLUP technique, and its 159 

values were determined by the weights derived from the SNP solutions discussed by Wang [21]. Following 160 

Stranden and Garrick [22], the following can be derived: 161 

û = DZ´G−1 ĝ 162 

where û is the vector of estimated SNP effects, and ĝ is a vector of GEBV from only genotyped individuals. 163 

The weight for SNP i in this study was calculated as ui
2. Constructing an algorithm for predicting D from GBLUP 164 
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is possible using the above equation. The algorithm was as follows for the iterative steps of the WGBLUP, as 165 

stated by Wang [21]:  166 

i. Set t = 0, D(t) = I, where t is the iteration number, and I denotes the identity matrix. 167 

ii. The construct matrix Gt = ZD(t)Z´λ, where t is the iteration number; The incidence matrix Z 168 

equals the matrix M minus matrix P, in which M is n ⅹ m where n is the number of individuals and m is 169 

the number of markers used, and P represents to 2pi. 170 

iii. Compute genomic EBV (GEBV, ĝ) utilizing the GBLUP method. 171 

iv. Calculate SNP effects of all SNP as û(t) = λD(t)ZG(t)
−1âg. 172 

v. Calculate SNP weight as di(t+1) = ûi(t) 
2 2pi(1 − pi), where i is the ith SNP [23]. 173 

vi. Normalize matrix D(t+1) =
tr(D(0))

tr(D(t+1))
D(t+1). 174 

vii. Construct the matrix G(t+1) = ZD(t+1)Z´λ. 175 

viii. t = t + 1. 176 

ix. Exit or loop to steps iii or iv. 177 

Breeding values were predicted using BLUPF90+ software [24], while the calculation of SNP effects for 178 

WGBLUP was performed using the postGSf90 software [25]. 179 

Estimation of variance components and heritability 180 

The total phenotypic variance (σp
2) was calculated as follows: 181 

σp
2 = σu

2 + σe
2 182 

The heritability values for each trait were calculated using the following formula: 183 

h2 =
σu

2

σu
2 + σe

2
=

σu
2

σp
2
 184 

where σu
2 is the genetic variance; σe

2 is the residual variance; and σp
2  is the phenotypic variance. 185 

Estimation of GEBV 186 

The GEBV of an animal i was calculated after estimating the marker effects using the following formula below: 187 
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GEBVi = ∑ zijĝj

m

j=1
 188 

where m is the number of markers; zij is the individual i genotype at marker loci j; ĝj is the allele substitution 189 

effect at locus marker j. 190 

Estimation of the model accuracy 191 

The following formula was used to estimate the GEBV accuracy for an animal i [26]: 192 

Accuracyi = √1 −
PEV

σg
2

 193 

where σg
2 is the additive genetic variance of each trait, and PEV is the predicted error variance of the GEBV 194 

for each animal. The inverse of the coefficient matrix of the mixed model equation, as previously defined [17], 195 

can be used to calculate each PEV estimate in each individual. For each animal and trait, this study first calculated 196 

the standard error of prediction (or the square root of PEV), which was transformed into an estimate of the PEV. 197 

The only other element in the equation is the additive genetic variance or σg
2 . Each trait was calculated 198 

individually using the REML method from the same dataset. 199 

Genetic and phenotypic correlation 200 

The genetic and phenotypic (co)variances were estimated using pairwise bivariate animal model implemented 201 

in MTG2 v2.22 software. The animal model for the analysis of two traits or bivariate analysis is written as [27]: 202 

[
y1

y2
] = [

X1 0
0 X2

] [
b1

b2
] + [

Z1 0
0 Z2

] [
u1

u2
] + [

e1

e2
]  203 

Where, y1  and y2  represents the observation vectors corresponding to individuals for traits 1 and 2. The 204 

vectors b1 and b2 denotes the fixed effects for traits 1 and 2, while u1 and u2 are vectors representing the 205 

additive genetic effects for traits 1 and 2, respectively. The e1 and e2 are the vectors of residual effects for traits 206 

1 and 2. X and Z are the incidence matrices related to effects b and u, respectively. 207 

The genetic (rg), and phenotypic (rp) correlations were estimated using the following formula: 208 

rg =
σgX,Y

√σgX 
2 σgY

2
; rp =

σpX,Y

√σpX 
2 σpY

2
 209 

where σgX,Y
, and σpX,Y

 are the genetic, and phenotypic covariance between traits X and Y; σg 
2  represents the 210 
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additive genetic variance; σp 
2  is the phenotypic variance of the corresponding traits. 211 

In addition, the coefficient of the genetic variation (CVg) was calculated as the square root of the additive 212 

genetic variance divided by the mean of the trait. 213 

CVg% =
σg

x̅
ⅹ100 214 

 215 

Results and Discussion 216 

Phenotypes and genotypes 217 

Table 1 lists the summary statistics (mean, maximum, minimum, standard deviations, and phenotypic 218 

coefficient of variation) of the studied traits of 1,103 animals consisting of the Hanwoo population. The mean 219 

values for CI, AFC, GL, NAIPC, CWT, EMA, BF, and MS in this study were 378.43 days, 741.19 days, 286.45 220 

days, 1.29, 374.86 kg, 87.81 cm2, 13.49 mm and 4.08, respectively. NAIPC (49.35%) showed the highest 221 

phenotypic variability. On the other hand, the phenotypic variability was lower in the GL among the reproductive 222 

traits and in the CWT among the carcass traits. The mean values for the reproductive traits are lower than those 223 

published earlier [28-32] and higher than in other studies [33, 34]. Noticeable differences in the sample sizes 224 

among studies were found, which might explain some of the variations of estimation in the present study and other 225 

reports. A longer calving interval is often related to lower fertility due to an undesirable conception rate. A recent 226 

report [35] found that the average values for CWT, EMA, BF, and MS were 447 kg, 93.75 cm2, 12.80 mm, and 227 

4.89, respectively, in the Hanwoo steer population. Another experiment on the Hanwoo population conducted over 228 

a period from 1989 to 2015 reported that the average for CWT, EMA, BF, and MS at approximately 24 months of 229 

slaughter age was 343.96 kg, 78.90 cm2, 8.71 mm, and 3.33, respectively [36]. 230 

A set of 41,445 common SNPs was selected after the quality control (QC) test, which covered 79.52% of initial 231 

SNPs on all 29 Bos taurus autosomes (BTA). The markers were unsteadily distributed with substantial over-232 

representation on certain chromosomes. BTA 1 contains the highest number of SNP markers (2,614), covering a 233 

length of 52.10 Mb, while BTA 28 had the lowest number of SNPs (714). Finally, Table 2 lists the SNP information 234 

after the identity-by-state (IBS) test and QC procedure. 235 

Heritability estimation 236 
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The h2 and variance components were estimated with standard errors for all reproductive and carcass traits 237 

using the markers and phenotypic information, as presented in Table 3. The estimates of heritability for CI, AFC, 238 

GL, NAIPC, CWT, EMA, BF, and MS were 0.10±0.05, 0.13±0.05, 0.17±0.06, 0.11±0.04, 0.37±0.07, 0.35±0.07, 239 

0.27±0.06, and 0.45±0.07, respectively. The average h2 values for the carcass and reproductive traits were 240 

estimated to be 0.13 and 0.36, respectively. Higher h2 values were observed in the GL among the reproductive 241 

traits and MS among the carcass traits. For the reproductive traits in this study, the estimated h2 values were in the 242 

range of low heritability. The observed low heritability estimates were comparable to previously reported 243 

estimates in other beef breeds. Lopez et al. [34] reported low h2 estimates for a CI of 0.01, GL of 0.14 in Hanwoo 244 

cattle, and high h2 estimates for an AFC of 0.08 in the same breed. In Japanese Black (Wagyu) cattle, h2 estimates 245 

of 0.049 [31] and 0.047 [37] for CI, 0.215 [37], and 0.158 [31] for AFC, and 0.020 for NAIPC [31] were described. 246 

Yague et al. [32] reported estimated h2 of 0.085, 0.037, and 0.071 for CI, GL, and NAIPC, respectively. Several 247 

studies reported the estimates of heritability for CI was 0.222 in Jersey ⅹ Red Sindhi [38], 0.105 [39], and 0.02 248 

[40] in Nelore cattle, and 0.09 in Brahman-Angus cattle [41]. Adonai et al. [42] reported a higher heritability of 249 

0.20 for AFC in Simmental cattle.  250 

The heritability estimates for carcass traits in this study differ considerably from those obtained in previous 251 

studies by Naserkheil et al. [43]. They reported the h2 values for CWT, EMA, BF, and MS of 0.28, 0.46, 0.57, and 252 

0.59, respectively, using the pedigree-based GBLUP method. Another report on the genetic analysis of carcass 253 

traits for Hanwoo beef cattle on 6,092 animals from 2005 to 2017 showed corresponding h2 values of carcass 254 

weight as 0.35±0.04, 0.43±0.05, 0.48±0.05, and 0.56±0.05, respectively, using a pedigree-based GBLUP model 255 

[35]. 256 

Heritability estimates based on the 50K SNP Chip for CWT, EMA, BF, and MS in this present study agreed 257 

with those observed by Srivastava et al. [44] for a population of 7,324 Korean Hanwoo cattle. On the other hand, 258 

Lopez et al. [45] suggested that the estimated h2 with 50K SNP panel in Korean Hanwoo cattle for carcass traits 259 

was medium to high, ranging from 0.32 to 0.40 based on GRM. 260 

According to CVg, the results showed significant additive genetic variation for NAIPC (15.50%), BF (22.34), 261 

and MS (31.58%), compared to relatively lower additive genetic variation for the other traits (0.96 to 8.59%). The 262 

evolvability of a trait is determined by its genetic variability [46], which impacts how easily traits can be altered 263 

by breeding. In other words, the predicted genetic gain for NAIPC, BF, and MS will be higher than other traits 264 
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(using the standardized scale). 265 

The low h2 estimate observed in our study can be attributed to several factors that warrant further discussion. 266 

Firstly, it is important to highlight that in our study, the h2 was calculated using markers and phenotypic 267 

information without access to pedigree records. The absence of pedigree information can impact the accuracy of 268 

h2 estimates, as pedigree records play a crucial role in capturing true genetic relationships among individuals. 269 

Studies that utilized pedigree information or a complete dataset of individuals have reported higher h2 estimates 270 

for carcass traits. Moreover, our study was limited by a relatively small sample size, and this factor can also 271 

influence the estimation of h2. A reduced sample size may result in diminished statistical power to accurately 272 

detect genetic effects. Given these limitations, it is expected that the h2 estimates for carcass traits in our study 273 

would be lower compared to investigations with pedigree information and larger sample sizes. Furthermore, there 274 

may be differences in the slaughter age of the animals, such as the number of records, the breed, differences in the 275 

fixed effects, and the statistical models used for analyses, which could account for the disparity between the 276 

estimates of this study and those of previous studies. In addition, the differences in heritability can be explained 277 

by the varying genotype-environment interactions. However, despite these challenges, our study provides valuable 278 

insights into the heritability of carcass traits using marker-based methods and highlights the need for more 279 

comprehensive studies with larger sample sizes and pedigree information to obtain more accurate heritability 280 

estimates.  281 

Estimation of GEBV prediction accuracy 282 

The GEBV accuracy for reproductive and carcass traits in Hanwoo cows was estimated using the GBLUP and 283 

WGBLUP models with a complete data set. Generally, the predictive accuracy for most traits slightly varied 284 

between GBLUP and WGBLUP models (Table 4). The accuracy of the genomic predictions ranged from 0.51 to 285 

0.60 in reproductive traits and 0.68 to 0.74 in carcass traits using the GBLUP model, whereas the accuracy ranged 286 

between 0.51 and 0.66 in the reproductive traits, and 0.72 and 0.79 in the carcass traits in WGBLUP model, 287 

respectively. The average accuracy for reproductive traits in the studied population was approximately 0.54 288 

(GBLUP) – 0.57 (WGBLUP) and approximately 0.71 (GBLUP) – 0.76 (WGBLUP) for carcass traits. The average 289 

GEBV accuracy in the WGBLUP indicated more positive changes than GBLUP (5.6% in the reproductive traits 290 

and 6.7% in the carcass traits) among the GEBV estimates of all studied traits. In this study, the WGBLUP showed 291 

obvious superiority over the GBLUP method. Currently, the genomic selection is applied in beef cattle on a large 292 
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scale, focusing mainly on the carcass traits [47, 48]. 293 

Some studies have been conducted to evaluate the average prediction accuracy of genomic evaluations using 294 

GBLUP and ssGBLUP methods for the reproductive traits on different populations, such as Canadian Holstein 295 

(Guarini et al., 2018) and Nelore cattle (Alves et al., 2021). The genomic evaluation accuracy for the reproductive 296 

traits varied among breeds, the genetic architecture of the traits studied, statistical method, effects of SNPs, and 297 

the used SNP set. For AFC, Laodim et al. [49] reported that the accuracy performance of the ssGBLUP model was 298 

0.297 and between 0.23 and 0.33 for Thai crossbreed animals and Nelore cattle, respectively, using another three 299 

different Bayesian statistical methods [50] and appeared to be a lower value compared to the present findings. 300 

In Nelore cattle, the average prediction accuracy ranged between 0.38 and 0.42 by GBLUP and Bayesian 301 

method for the same trait [51], which partially supports our results for AFC accuracy. Boddhireddy et al. [52] 302 

showed a higher accuracy of prediction in Nelore cattle using the BayesC method for reproductive traits, which 303 

was 0.64. 304 

Some studies reported the performance of genomic prediction models for various traits in different breeds [53-305 

56]. Kim et al. [57] observed high prediction accuracy using 919 Hanwoo cattle by the GBLUP method, and the 306 

prediction accuracies obtained for CWT, EMA, BF, and MS were 0.779, 0.758, 0.766, and 0.791, respectively. On 307 

the other hand, the genomic prediction accuracy varied among traits while using GRM constructed on a 50K SNP 308 

panel; the genomic prediction accuracy for CWT, EMA, BF, and MS were 0.63, 0.58, 0.55, and 0.56, respectively 309 

[45]. By contrast, lower accuracy was also observed using a 50K SNP chip for Korean Hanwoo cattle in the 310 

GBLUP method, with EMA, BF, and MS values ranging from 0.27 to 0.30, respectively [1]. 311 

Genetic and phenotypic correlation 312 

Table 5 lists the genetic and phenotypic correlations among the reproductive and carcass traits. The genetic and 313 

phenotypic correlations between traits were analyzed using the genetic and phenotypic variance and the 314 

covariance of the two traits. The estimates of the genetic correlation between reproductive and carcass traits were 315 

low to high, ranging from 0.56 ± 0.03 to 0.61 ± 0.03. Acccording to Dahliani et al. [58], the correlation values 316 

were divided into the following categories: very low (0.00 to 0.19), low (0.20 to 0.39), moderate (0.40 to 0.59), 317 

strong (0.60 to 0.79), and very strong (0.80 to 1.00). Strong positive genetic correlations were found between GL 318 

and NAIPC (0.61 ± 0.03) and CWT and EMA (0.60 ± 0.02), as represented in Table 5, which were the highest 319 
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correlations among the trait pairs. Furthermore, the strength of the associations between NAIPC and CWT (0.49 320 

± 0.03) and AFC and CWT (0.48 ± 0.03) were moderate and positive. Hence, the selection of these traits could be 321 

advantageous. This strong positive genetic correlation could be due to pleiotropy, wherein a gene or a set of genes 322 

influences two traits and results in the genetic correlation between these traits [59]. 323 

Positive phenotypic (0.05 ± 0.02) and genetic correlations (0.26 ± 0.01) were observed between CI and AFC. 324 

The genetic associations between CI and AFC were stronger than the phenotypic correlations. Shin et al. [60] 325 

reported a comparable positive association between these traits in Hanwoo cows, which strongly supports the 326 

present study. The moderate genetic associations between reproductive traits have the same sign as patterns that 327 

can be observed phenotypically [61, 62]. Gutiérrez et al. [63] reported a favorable genetic correlation (0.233) in 328 

beef cattle between CI and AFC. In contrast to the genetic association, which was only weakly positive (0.10), 329 

Lôbo [64] discovered a high positive phenotypic correlation between AFC and CI (0.43). In these results, AFC 330 

appears to be an important characteristic reflecting the reproductive health of cows. An improvement in the CI 331 

performance would result from the selection for a shorter AFC. Berry and Evans [65] estimated a positive genetic 332 

association of 0.22, while Lopez et al. [66] reported a correlation of 0.52; however, the genetic correlation between 333 

AFC and CI was only found to be between 0.09 [67] and 0.25 during the first 42 days of the calving season. In 334 

contrast, CI with AFC was a low negative correlation, which is not an agreement reported elsewhere [68, 69]. 335 

They reported negative correlations between CI and AFC of 0.13 for Brahman cattle and 0.06 for Nelore cattle. 336 

The calculated weak positive associations between GL and CI also agree with Lopez et al. [66]. The phenotypic 337 

correlation of 0.04 between GL and AFC is consistent with earlier investigations [66]. These outcomes resembled 338 

those in Nellore cows, as reported by Magnabosco et al. [70]. Oyama et al. [71] also mentioned the genetic 339 

relationships between GL and CI of 0.16. Bekele et al. [72] reported strong positive genetic correlations between 340 

GL and CI in Fogera cattle, 0.72. 341 

The strongest correlation among all the trait pairs in this analysis was obtained between GL and NAIPC (0.61 342 

± 0.03), which showed a significant genetic relationship. On the other hand, the CI showed the highest negative 343 

correlation with NAIPC (0.56 ± 0.03) and AFC with GL (0.41 ± 0.02). Similar findings have been achieved in 344 

Japanese Black cattle by Setiaji and Oikawa [73], who reported the positive genetic and phenotypic correlation 345 

between NAIPC and GL. NAIPC was recorded before conception, and GL represents a heifer’s ability to sustain 346 

the pregnancy until the day of calving. As a result, the strong genetic link shows that these two traits are related 347 
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genetically and might be influenced by a group of genes. As a result, choosing one of the traits would have a 348 

significant impact on the other. 349 

This study found that estimates of genetic association between traits ranged widely. The traits of Hanwoo cows, 350 

CWT and EMA, are highly and positively associated, suggesting that animals with a higher EMA will result from 351 

selection for increasing the CWT. This correlation estimate was similar to that of Park et al. [74] and Choi et al. 352 

[75], who used Hanwoo males to report values between 0.52 ± 0.08 and 0.55 using similar features. Other Hanwoo 353 

research revealed the same positive association [43, 76-79]. The association between CWT and EMA was 354 

supported by several different studies involving Angus [80-83], Brangus [84, 85], Angus–Brahman [86], Canadian 355 

crossbred cattle [87], Nellore cattle [88], Heriford, Simmental [89], Brazilian Nelore [90], Brahman [91, 92], and 356 

other crossbred cattle [93]. 357 

The genetic correlation of BF with CWT (0.12 ± 0.03) and EMA (0.18 ± 0.03) was negative, which is 358 

financially feasible for the beef industry because CWT and EMA will increase if BF decreases and make the 359 

carcass profitable. Davoli et al. [94] obtained similar results in Large White pigs and revealed negative genetic 360 

correlations between CWT and BF. In the case of the fat content, BF is associated with MS (0.35 ± 0.02), which 361 

increases the juiciness of the meat. 362 

According to these findings, the genetic correlation between EMA and MS was determined to be positive and 363 

fairly moderate (0.28 ± 0.03), similar to the results from other research [75, 92, 95, 96], but significantly lower 364 

than the estimate of 0.65 published by Hwang et al. [97] in Hanwoo population.  365 

In this study, the findings of the genetic correlation between reproductive and carcass traits were moderate to 366 

low, or negative. All reproductive traits have moderate to weak positive genetic correlations with CWT. MacNeil 367 

et al. [98] also reported a lower correlation of GL with CWT, which was also close to zero. On the other hand, 368 

EMA showed positive genetic correlations between AFC (0.24 ± 0.03) and NAIPC (0.35 ± 0.03). Furthermore, 369 

BF also showed a weakly positive genetic correlation with CI and AFC. The highest positive genetic correlations 370 

between the reproductive and carcass traits were between NAIPC and CWT (0.49 ± 0.03) and AFC and CWT 371 

(0.48 ± 0.03). In contrast, negative genetic correlations were found between AFC and MS. Negative results have 372 

also been reported [99, 100], showing that the age at first calving can be lowered by increasing the meat and fat 373 

deposition. Higher subcutaneous fat deposition may signal faster maturation and make animals more sexually 374 

precocious, but more research is needed. A lower fat content is better for reproduction in cows. 375 
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These studies showed that the strong phenotypic correlation of 0.66 ± 0.02 between CWT and EMA, which 376 

was the strongest correlation among all pairs of reproductive and carcass traits, followed by the weak positive 377 

correlations between EMA and MS, AFC, and NAIPC, between CWT and BF, and between CWT and MS which 378 

were 0.33, 0.30, 0.29, and 0.29, respectively. In the present study, the phenotypic correlation was within the range 379 

of estimates made previously for Korean Hanwoo [95], Angus [80, 81], Brangus [84, 85], Angus-Brahman [86], 380 

Canadian crossbred cattle [87], and Nellore cattle [88]. 381 

This study found low to moderate genetic correlations between the attribute of reproductive and carcass weight, 382 

which may explain why choosing a heavier body weight may result in longer CI, AFC, GL, and increased NAIPC. 383 

The genotype-environment interaction is a more likely cause of the phenotypic manifestation of these traits 384 

because of the near-zero phenotypic association and the marginally favorable genetic correlation between CWT, 385 

AFC, and NAIPC. After producing a reference population for carcass and reproductive traits, the application of 386 

genomic selection would be preferable to address the limitations of this study. These findings on variance 387 

components, heritability estimates, GEBV accuracy, and correlation coefficients for reproductive and carcass traits 388 

offer important insights into the genetic merits of Hanwoo cows. They may benefit future research on them and 389 

their incorporation into the Hanwoo National Evaluation for genomic selection. 390 

 391 
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Tables 641 

Table 1. Descriptive statistics of the reproductive and carcass traits. 642 

Traits N Mean SD Max Min CV (%) 

CI (days) 1,103 378.43 53.82 601 242 14.22 

AFC (days) 1,103 741.19 73.86 999 499 9.97 

GL (days) 1,103 286.45 6.72 337 252 2.35 

NAIPC (1-4) 1,103 1.29 0.64 4 1 49.35 

CWT (kg) 1,103 374.86 49.93 541 160 13.32 

EMA (cm2) 1,103 87.81 12.81 131 22 14.58 

BF (mm) 1,103 13.49 5.84 39 2 43.28 

MS (1-9) 1,103 4.08 1.93 9 1 47.31 

N, number of individuals; SD, standard deviations; CV, coefficient of variation; CI, calving interval; AFC, age at 643 

first calving; GL, gestation length; NAIPC, number of artificial inseminations per conception; CWT, carcass 644 

weight; EMA, eye muscle area; BF, backfat thickness; MS, marbling score. 645 
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Table 2. SNP statistics after QC for Hanwoo autosomes. 656 

BTA 

No. of  SNPs 

before QC 

No. of SNPs 

after QC 

Remove 

frequency 

Average 

distance (kb) 

Standard 

deviation (kb) 

Min 

distance (kb) 

Max 

distance (kb) 

Total 

distance (Mb) 

1 3221 2614 0.23 60.50 54.60 0.05 936.23 52.10 

2 2756 2181 0.26 62.70 68.00 0.08 1087.31 84.73 

3 2579 2038 0.27 59.50 62.30 0.01 863.15 42.65 

4 2477 1932 0.28 62.10 53.20 0.03 507.93 83.84 

5 2154 1662 0.30 72.90 70.60 0.04 818.54 113.01 

6 3157 2526 0.25 47.10 56.80 0.03 1601.81 83.13 

7 2478 2020 0.23 55.70 66.30 0.13 1177.03 63.54 

8 2243 1776 0.26 63.70 54.20 0.08 547.23 51.10 

9 2073 1623 0.28 65.00 62.70 0.45 642.76 62.10 

10 2355 1872 0.26 55.70 92.80 0.07 3259.34 118.98 

11 2179 1717 0.27 62.50 58.90 0.13 833.19 121.14 

12 1650 1252 0.32 72.60 120.60 0.24 2470.22 46.18 

13 1681 1331 0.26 63.00 55.20 0.07 715.70 65.16 

14 2266 1806 0.25 46.10 46.50 0.01 505.77 157.88 

15 1665 1312 0.27 64.60 64.90 0.01 969.41 45.33 

16 1598 1241 0.29 65.70 70.20 0.18 1360.52 74.85 

17 1567 1229 0.28 61.00 65.50 0.16 1301.14 136.66 

18 1301 1041 0.25 62.70 63.10 0.51 966.71 71.10 

19 1377 1120 0.23 56.80 53.30 0.73 586.98 107.18 

20 1568 1237 0.27 57.90 52.00 0.47 559.10 90.83 

21 1397 1149 0.22 61.90 70.30 0.49 1322.35 112.38 

22 1209 969 0.25 63.20 52.80 0.09 494.16 61.22 

23 1124 924 0.22 56.40 53.80 0.32 488.53 81.41 

24 1229 1000 0.23 62.20 52.90 0.06 454.80 50.95 

25 937 783 0.20 54.50 45.50 0.07 332.62 120.01 

26 1030 825 0.25 61.80 47.50 0.28 394.54 105.46 

27 917 745 0.23 60.90 60.20 0.15 587.19 121.08 

28 902 714 0.26 64.80 56.70 0.02 555.53 104.17 

29 1026 806 0.27 63.50 65.40 0.03 1060.19 71.59 

Total 52116 41445 

0.26 

(Average) 

60.93 

(Average) 

61.96 

(Average) 

0.17 

(Average) 

944.83 

(Average) 
2499.76 

BTA, Bos taurus autosomes (29); kb, kilobases; Mb, megabases. 657 
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Table 3. Estimates of heritability, additive genetic variance, residual variance, phenotypic variance, and 660 

coefficient of genetic variance for reproductive and carcass traits in Hanwoo cows. 661 

Traits h2 𝛔𝐚
𝟐 𝛔𝐞

𝟐 𝛔𝐩
𝟐 CVg (%) 

CI 0.10 (0.05) 280.41 (143.80) 2616.93 (170.65) 2902.65 (127.75) 4.42 

AFC 0.13 (0.05) 697.16 (275.85) 4689.72 (311.90) 5383.78 (236.91) 3.56 

GL 0.17 (0.06) 7.54 (2.58) 37.51 (2.72) 45.44 (2.05) 0.96 

NAIPC 0.11 (0.04) 0.04 (0.02) 0.37 (0.02) 0.41 (0.02) 15.50 

CWT 0.37 (0.07) 918.70 (185.23) 1546.92 (152.21) 2491.93 (118.34) 8.09 

EMA 0.35 (0.07) 56.87 (12.19) 105.91 (10.20) 163.64 (7.68) 8.59 

BF 0.27 (0.06) 9.08 (2.28) 24.08 (2.06) 33.33 (1.54) 22.34 

MS 0.45 (0.07) 1.66 (0.29) 2.07 (0.22) 3.74 (0.18) 31.58 

h2, heritability; σa
2, genetic variance; σe

2, residual variance; σp
2, phenotypic variance; CVg, coefficient of genetic 662 

variance. The numbers in parentheses are standard errors. 663 
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Table 4. Accuracy of the genomic predictions of Hanwoo cows. 675 

Traits 

GBLUP WGBLUP 

Mean SD Max Min Mean SD Max Min 

Reproductive Traits 

CI 0.51 0.04 0.62 0.14 0.56 0.03 0.66 0.43 

AFC 0.52 0.04 0.62 0.15 0.55 0.03 0.64 0.42 

GL 0.60 0.04 0.69 0.23 0.66 0.03 0.74 0.48 

NAIPC 0.53 0.04 0.62 0.16 0.51 0.03 0.62 0.37 

Carcass Traits 

CWT 0.73 0.03 0.79 0.33 0.77 0.02 0.81 0.57 

EMA 0.68 0.03 0.75 0.29 0.74 0.02 0.79 0.54 

BF 0.68 0.03 0.74 0.29 0.72 0.02 0.79 0.55 

MS 0.74 0.03 0.80 0.34 0.79 0.02 0.84 0.61 

GBLUP, genomic best linear unbiased prediction; WGBLUP, weighted GBLUP; SD, standard deviation. 676 
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Table 5. Estimates of the genetic (above the diagonal) and phenotypic (below the diagonal) correlations (standard 687 

error in parentheses) among reproductive and carcass traits in Hanwoo cows. 688 

Trait CI AFC GL NAIPC CWT EMA BF MS 

CI 1.00 

0.26 

(0.01) 

0.36 

(0.03) 

-0.56 

(0.03) 

0.09 

(0.02) 

-0.03 

(0.03) 

0.30 

(0.03) 

-0.21 

(0.03) 

AFC 

0.05 

(0.02) 
1.00 

0.41 

(0.02) 

0.01 

(0.03) 

0.48 

(0.03) 

0.24 

(0.03) 

0.21 

(0.01) 

0.04 

(0.03) 

GL 

0.06 

(0.03) 

0.04 

(0.03) 

1.00 

0.61 

(0.03) 

0.04 

(0.03) 

0.14 

(0.06) 

0.09 

(0.08) 

0.07 

(0.03) 

NAIPC 

0.03 

(0.08) 

0.30 

(0.02) 

0.05 

(0.03) 

1.00 

0.49 

(0.03) 

0.35 

(0.03) 

0.04 

(0.05) 

0.15 

(0.03) 

CWT 

0.01 

(0.03) 

0.01 

(0.03) 

0.01 

(0.03) 

0.04 

(0.03) 
1.00 

0.60 

(0.02) 

0.12 

(0.03) 

0.13 

(0.03) 

EMA 

0.02 

(0.01) 

0.03 

(0.04) 

0.00 

(0.02) 

0.05 

(0.03) 

0.66 

(0.02) 

1.00 

0.18 

(0.03) 

0.28 

(0.03) 

BF 

0.04 

(0.03) 

0.04 

(0.03) 

0.03 

(0.07) 

0.02 

(0.01) 

0.29 

(0.03) 

0.09 

(0.03) 

1.00 

0.35 

(0.02) 

MS 

0.01 

(0.03) 

0.03 

(0.01) 

0.07 

(0.03) 

0.03 

(0.03) 

0.29 

(0.03) 

0.33 

(0.03) 

0.14 

(0.03) 
1.00 
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Figures 696 

A 697 

 698 

 699 
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 701 
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B 703 

 704 

Fig. 1. Phenotypic distribution: (A) Reproductive traits; and (B) Carcass traits in Hanwoo cows. The red 705 

dashed lines indicate the mean of the trait. 706 

 707 

ACCEPTED




