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ABSTRACT 6 

This study aimed to assess the effect of combined dietary supplementation with amino acids and chromium on 7 

carcass traits, meat yield and quality properties of finishing Woori heukdon (WHD) pigs. For this purpose, forty 8 

same-age WHD piglets were equally assigned into control and experimental groups (n=20 per group). The control 9 

group were received a basal diet while, the experimental group were received a basal diet supplemented with 10 

additional 4% lysine, isoleucine, methionine, threonine, valine and tryptophan during growing phase (30-65 kg body 11 

weight), and a basal diet supplemented with 0.1% (w/w) chromium picolinate during finishing period. The pigs were 12 

fed ad libitum with the diets until they reached a common market weight of around 110 kg. The animals were 13 

slaughtered and assessed for carcass traits and composition, and meat quality of loin, ham and belly cuts. Results 14 

showed that no differences in the live weight, carcass weight and total meat yield occurred between control and 15 

experimental groups (p>0.05). The dietary supplementations significantly increased the intramuscular fat content of 16 

the loin and ham cuts, and decreased the fat content of belly cut (p<0.05). No differences in the meat quality (e.g., 17 

pH and color) occurred between the control and experimental diets (p>0.05). Noticeably, the dietary 18 

supplementation reduced the concentration of PUFA-derived unpleasant aldehydes, and increased the number and 19 

quantity of Maillard reaction-derived pleasant aroma volatiles. It is suggested that dietary supplementation with the 20 

amino acids and chromium could be used to improve the meat quality property of WHD pigs. 21 

Keywords: Woori heukdon, Dietary Supplementation, Intramuscular fat, Meat quality 22 
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INTRODUCTION 34 

Perhaps it is known that the deposition of fat in meat animals in general and pigs in particular is important. However, 35 

meat producers are faced with a paradox in that the site of fat deposition determines whether or not the fat is 36 

desirable or undesirable. Intramuscular fat (IMF) is desirable for optimum organoleptic properties whereas, the fat in 37 

other depots must be at a minimum for optimum cutability. The deposition of fat in the meat animals is the result of 38 

two processes: adipogenesis (the absorption or synthesis of fatty acids from dietary origin and then transported to the 39 

adipose tissue), and the de novo fatty acids synthesis (DFS) from precursors (e.g., glucose, lactate) directly in the 40 

adipocytes [1]. 41 

IMF or marbling plays a critical role in meat eating quality, because of its great impacts on tenderness, juiciness 42 

and flavor of the meat [2-4]. Previous studies reported that preference for the IMF degree in pork varies widely 43 

among countries; about 47% of surveyed Korean consumers showed a strong preference for marbled pork, followed 44 

by Taiwan (34%), Japan (32%), China (23%) and Mexico (21%) [5]. According to a consumer evaluation study by 45 

Papanagiotou et al. [6]: marbling is the most important determinant of pork purchasing decision by Greece 46 

consumers. Ngapo [7] surveyed some Canadian provinces and showed a significant proportion of consumers 47 

strongly prefers marbled pork. A study reported by Argemí-Armengol et al. [8] showed that more than a half of 48 

Spanish and Portugal consumers (n=974) strongly prefer highly marbled pork. In general, these consumer studies 49 

have emphasized the importance of IMF in pork eating quality.  50 

Korean native black pig (KNP), as an indigenous porcine breed, was present on the Korean Peninsula thousands 51 

of years ago [9]. The KNP, generally maintained in a small population, is characterized by a uniform black coat 52 

color and strong disease tolerance [10]. Due to its superior meat quality (hard and white-colored fat, and high 53 

marbling) and outstanding palatability, the KNP has become the most popular domestic pig breed today [11,12]. In 54 

recent years, there is a high demand for meat from the KNP, despite its price being much more expensive than meat 55 

from other commercial pig breeds [13]. However, KNP exhibits low growth performance and lean rate compared to 56 

the Western-originated commercial pig breeds, so this indigenous breed has been used as a highly valuable genetic 57 

resource for crossbreeding with the Western breeds (e.g., Landrace and Yorkshire) to generate crossbred pigs with a 58 

higher growth rate, leanness and meat quality [10,14]. Most recently, the National Institute of Animal Science 59 

(NIAS, Korea) has developed a novel porcine breed (“Woori-Heukdon”, WHD) through the crossbreeding of Duroc 60 

sows and KNP sires [15]. In 2015, the WHD was registered in the Food and Agriculture Organization Domestic 61 

Animal Diversity-Information System, and they have recently been introduced for commercial meat production in 62 
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the country. However, we have recently observed that the use of available commercial diets resulted in an excessive 63 

fat deposition in WHD carcasses compared with other commercial pig breeds [16]. Also, the IMF content in WHD 64 

meat is still lower compared to that in meat from other indigenous breeds such as Iberian pigs [17].  65 

Recently, researchers have proposed that dietary amino acids (e.g., valine, tryptophan, lysine, histidine, 66 

isoleucine, leucine, phenylalanine and threonine) supplementation could be an effective intervention in reducing 67 

body fat deposition and improving the IMF in pork [18,19]. The mechanisms underlying this phenomenon is that the 68 

supplied amino acids could alter the functional role of key lipid metabolism- related factors (e.g., peroxisome 69 

proliferator activated receptor gamma and sterol regulatory element-binding protein-1 etc.) [20]. On the other hand, 70 

chromium is a trace element that is naturally present in a variety of foods such as meat, fish, fruits, drinks and grains 71 

[21]. Chromium is known as a glucose tolerance, it amplifies the insulin-like growth factors, which reduces the 72 

conversion of glucose to adipose tissue [22,23]. The National Research Council [24] has noted that chromium 73 

should be considered as a key ingredient in livestock nutritional supplementation. A number of studies have shown 74 

that dietary supplementation with 200-400 µ/kg chromium reduces fat accretion in pork carcasses [25]. 75 

To the best of our knowledge, however, no studies were conducted to investigate the effects of combined 76 

dietary supplementation with amino acids and chromium on the carcass traits, meat yield and quality of commercial 77 

pig breeds in general and WHD pigs in particular. To reduce the excessive fat accretion and increase the IMF 78 

content in WHD, we have developed particular feeding diets (supplemented with additional 4, 8 and 12% of lysine, 79 

isoleucine, methionine, threonine, valine and tryptophan, and different doses of chromium), and our preliminary 80 

results revealed that the dietary supplementation of additional 4% of these amino acids and 0.1% chromium 81 

effectively reduced the quantity of belly fat in growing-WHD pigs (below 60 kg body weight, data not shown). 82 

Hence, this study aimed to assess the effects of supplementation with additional 4% lysine, methionine, isoleucine, 83 

threonine, valine and tryptophan) and 0.1% chromium picolinate on the meat yield and quality properties of 84 

finishing WHD pigs.  85 

MATERIALS AND METHODS 86 

Animals and feeding treatment 87 

The experimental protocols used in this study were reviewed and approved by the Institutional Animal Care and Use 88 

Committee of NIAS (NIAS-2020-437). The experiment was performed between January and July 2023 at the Swine 89 

Experimental Farm (Cheonan) and Animal Products Utilization Division (Wanju) of NIAS (Korea). A total of 40 90 

Woori heukdon (WHD) piglets [Duroc sow (62.5%) × KNP sire (37.55%)] at same weaning age (21 days of age and 91 
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body weight: 31.49 ±0.24 kg) were randomly divided into two feeding groups. Each group had 20 pigs concluding 92 

10 castrated males and 10 females. All pigs of the control group were fed basal diets that were formulated to meet 93 

National Research Council, NRC [26] nutrient requirements. The pigs of experimental group were received a basal 94 

diet + 4% additional supplementation of lysine, isoleucine, methionine, threonine, valine and tryptophan during the 95 

growing phase (30~65 kg body weight), and basal diet + 0.1% (w/w) chromium picolinate during the finishing phase 96 

(65~110 kg body weight). The chemical ingredients of the feeding diets at the growing and finishing phases are 97 

presented in Table 1. The dose of supplemented amino acids and chromium were based on results of our preliminary 98 

study (data not shown) and previous studies [19,27,28]. During the experiment, the animals were housed in different 99 

cages (3.5 × 5.0 m, 0.8m2/head) and freely accessed to the feed and water. The pigs were harvested when they 100 

reached a common market weight (approximately 180 days-old and 110 kg body weight).  101 

Slaughter and carcass composition measurement 102 

At the end of the feeding trial, the pigs were transported from the experimental farm to a slaughter house with a 103 

transporting duration of approximately 2 h. At the abattoir, the pigs were laired in cages for 3 h with full access to 104 

water. Slaughter was performed following the commercial process. After removal of internal organs, head, feet and 105 

tail, the carcasses were split down the midline, washed using high-pressure washing pumps, and chilled at 2°C. 106 

During the slaughter, the live and carcass weights were recorded using a scale installed on the production line.  107 

After 24 h of slaughter, back-fat thickness was measured using a caliper on the midline between 11th and 12th rib, 108 

and last rib and first lumber vertebra. Next, both sides of each carcass were dissected into three portions (picnic 109 

shoulder, mid-section containing loin and belly, and ham) which were then dissected into 7 cuts (loin, shoulder ribs, 110 

shoulder butt, tenderloin, belly, picnic and ham), following the instruction of the Korean Pork Cutting Specification 111 

(KPCS) [29]. Thereafter, each cut was manually separated into skin, fat, bone and muscle.  112 

Meat quality assessment 113 

For meat quality properties analysis, three representative cuts: loin (m. longissimus thoracic et lumborum, LTL), 114 

belly and ham (m. semimembranosus) collected from the left carcass sides were used. The cuts were then prepared 115 

into sub-samples, and the sampling manners were fixed for all the cuts in each analysis.  116 

pH was measured in triplicate using a pH meter (model: pH*K 21, NWK-Technology GmbH). Before use, the 117 

device was calibrated with provided standard solutions (pH 4.00 and pH 7.00) following the manufacturer’s 118 

instruction.  119 
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The meat color was measured after 30 min blooming at 5 different locations on the surface of each sample, 120 

using a color meter (model: CR-400, Minolta Camera Co, Osaka, Japan). The color meter was calibrated against a 121 

standard white tile (Y = 86.5, X = 0.3171 and y = 0.3331). The color parameters measured were CIE L*, a* and b*. 122 

Cooking loss and shear force value were measured using the procedures as described in our previous study [16].  123 

The chemical composition (protein, fat, moisture and collagen) was determined with a Food Scan™ Lab 78810 124 

(Foss Tecator Co., Ltd., DK) as described by Anderson et al. [30]. 125 

Fatty acid composition 126 

The fatty acids content was analyzed following the method of Folch et al. [31]. Briefly, lipid content in the pork 127 

sample (10 g each) was extracted with chloroform: methanol (2.1, v/v). Following adding with 20 g of Na2SO4 and 128 

vortexing for 1 min, the lipid layer was carefully collected and placed in Erlenmeyer flask which was concentrated 129 

using rotary evaporator in pre-heated 55℃ water bath. Thereafter, 1 mL tricosanoic acid and 1 mL of 0.5N NaOH 130 

were added to each the sample, thoroughly mixed and placed into vials. A gas chromatography (GC)/flame 131 

ionization detector (FID, Varian Technologies) was used for analyzing the fatty acids.  The GC/FID conditions set 132 

was same as those shown in our previous study [16].  133 

Flavor volatile compounds  134 

To assess whether the dietary supplementation affected the flavor properties, two representative cut types (loin and 135 

belly) were used. The analysis of flavor volatile compounds was done following the procedure of Hoa et al. [32] 136 

with suitable modifications. The pork samples were manually chopped and cooked at around 180℃ on a frying-pan 137 

with continuously turning for about 2 min. Afterward, the samples (2 g each) were taken, placed into 20-mL vial and 138 

tightly capped with magnetic cap. Extraction of volatiles was carried out at 60℃ for 50 min using a SPME auto-139 

sampler (model: PAL RSI 85, Agilent), and were then analyzed using a gas chromatography and mass 140 

spectrophotometry (5977B MS, Agilent) under the conditions as described by Hoa et al. [16]. All flavor volatiles 141 

were identified by using Wiley library (Agilent) and further confirmed by external standards. The concentration of 142 

identified compounds was calculated using a concentration-known internal standard (2-methyl-3-heptanone).   143 

Statistical analysis 144 

Data was analyzed using the Statistical Analysis System (SAS) Enterprise software (version 7.1; SAS Institute, 145 

USA). The General Linear Model procedure of the SAS was used in which the feeding diet was set as the main 146 

effect while, the carcass traits, meat yield, color traits, chemical composition, shear force, fatty acids and flavor 147 
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volatiles were set as random variables. Means comparison was carried out using the Duncan’s test, and a p-value of 148 

˂0.05 was considered as statistically significant difference. 149 

RESULTS AND DISCUSSION 150 

Carcass and meat yield 151 

Table 1 shows that no differences in the carcass traits were observed between the animal groups (p>0.05). However, 152 

it was observed that the back-fat thickness tended to decrease in the pigs which were received the dietary 153 

supplementations. Compared to market weight of commercial pig breeds such as [(Landrace × Yorkshire) ♀ × 154 

Duroc ♂] finished at the same age (180 days old) reported by Hoa et al. [33], the WHD pigs in the present study 155 

exhibited a similar body weight. This signifies that the growth potential of WHD pigs in this study was comparable 156 

to that of the commercial pig breeds. Furthermore, the results indicating no differences in the live weight between 157 

the pig groups could be related to the same dietary energy levels (3,300 Kcal/kg). Regarding this, a numerous 158 

studies have also reported that feeding diets have no effects on pig’s growth rate as they meet the required energy 159 

for growth [34-36]. 160 

Regarding the carcass composition, no effects of the dietary supplementations were observed on the total meat, 161 

fat, bone and skin weights (p>0.05). This indicated a similar rate of protein and fat (subcutaneous and intermuscular 162 

fat depots) deposition in both the control and experimental groups. Similar to the present results, Hu et al. [19] found 163 

no effects of dietary amino acids supplementation on the total meat, fat, bone and skin yields of commercial pigs 164 

finished at 110-120 kg body weight. A study reported by Park et al. [28] showed a reduction in back-fat thickness 165 

and increased meat yield of pigs supplemented with 200 ppb chromium.    166 

Chemical composition of meat 167 

The chemical composition of WHD meat fed the control and experimental diets are presented in Table 3. IMF 168 

content is recognized to be the most important constituent determining eating quality of meat because it contributes 169 

to tenderness, juiciness and flavor [3,4]. Therefore, producing pork with increased IMF content to meet the 170 

consumer’s demand is critical task for the pig industry [19]. Results showed that the pigs received the dietary 171 

supplementation had a significantly higher IMF content in both loin (increased by 1.55%) and ham (increased by 172 

0.94%) than the control group (p<0.05). The representative images showing the transverse cuts of loins are shown in 173 

Fig. 1. Our results align with those of Ma et al. [18] and Hu et al. [19], who reported an increase in IMF content of 174 

pork LTL muscle fed dietary amino acids (arginine and glutamic acid) supplementation. Tan et al. [37] also found 175 

an approximately 70% greater IMF content of longissimus dorsi (LD) muscles of growing-finishing pigs received 176 
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dietary amino acids supplementation compared to non-supplemented pigs. In contrast to the increase of IMF in the 177 

loin and ham cuts, a significant decrease (by approximately 7%) of fat content was observed in the belly cut of pigs 178 

fed the experimental diet (41.05%) compared to the control diet (47.48%). In the present study, the belly cuts were 179 

fabricated according to the KPCS [29], where only the skin and ribs are removed. Therefore, the fat content, is 180 

comprised of all subcutaneous, intermuscular and intramuscular fat depots. This signifies that supplementation with 181 

the amino acids and chromium picolinate effectively reduced the subcutaneous and/or intermuscular fat deposition 182 

on the belly cut. We have recently observed that the belly cut of WHD pigs has a much higher fat content (over 183 

40%) compared to that of commercial LYD pig (around 30%) [16]. Such the high fat content may result in a higher 184 

trimming loss and reduced consumer preference for the belly. In the present study, the dietary supplementations with 185 

amino acids and chromium effectively increased the desirable fat (IMF) in the lean cuts (loin and ham) and 186 

decreased the undesirable fat (e.g., subcutaneous and/or intermuscular fat) in the high-fat content cut like belly.  187 

The adipose tissues of pork carcass may be deposited from (i), diet-derived fatty acids and (ii), the DFS 188 

pathway [38]. In the DFS pathway, the fatty acids are synthesized by converting glucose into triglycerides through 189 

the glycolysis cycle [1]. The possible mechanisms underlying the phenomena observed in the present study could be 190 

due to: (i) the supplemented amino acids promoted the lipogenesis gene’s expression in the muscle tissues [19], 191 

resulting in the increased IMF content, and (ii) the chromium could amplify the insulin action, resulting in increased 192 

glucose converting into energy required for pig’s metabolic activities rather than for the DFS process [23]. Mooney 193 

and Cromwell [25] found a significant reduction in total carcass fat in growing-finishing pigs supplemented 194 

chromium picolinate or chromium chloride. In the present study, the dietary supplementations with combined amino 195 

acids and chromium did not affect the total carcass fat (Table 2), but it effectively decreased in the fat level of belly 196 

cut. This could be related to the synergetic effect of both the supplemented amino acids and chromium picolinate.  197 

For the other composition, the dietary supplementations did not affect the moisture content but it reduced the 198 

protein content of loin and ham cuts, this was probably due to the increased IMF content in these cuts. The 199 

supplementations also caused an increase in the moisture content of belly, this could be associated with the 200 

decreased fat level in this cut, because the fat and moisture content in meat content are inversely related to each 201 

other [39]. 202 

Meat quality and color traits 203 

It is well recognized that cooking loss (reflecting the water holding capacity), pH and shear force, are important 204 

quality traits of meat. The dietary supplementations did not affect on all these traits in the loin and belly cuts (Table 205 
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4) (p>0.05). However, compared with the control group, the dietary supplementations reduced the cooking loss of 206 

belly (p<0.05). This indicates that the dietary supplementations improved the WHC of belly cuts. Color is an 207 

important quality trait of meat [40]. The dietary supplementations did not influence the lightness, redness and 208 

yellowness of all the three cuts examined (Table 5). Similar to the present fining, Tan et al. [37] and Hu et al. [19] 209 

reported no effects of dietary supplementations with amino acids (e.g., arginine and glutamic acid) on pH, cooking 210 

loss and color traits of pork LD muscles. Until now, there is limited research on the dietary supplementation with 211 

chromium on pork quality. Studies by Boleman et al. [41] and Wang et al. [42] also showed that dietary 212 

supplementation with chromium chloride or picolinate did not influence the meat quality of LD muscles of finishing 213 

pigs.  214 

Fatty acid profiles 215 

To examine whether the dietary supplementations influence the fatty acids composition of meat, two representative 216 

cuts (loin and belly) were used, and the results are shown in Table 6. For the loin cut, the dietary supplementations 217 

only affected the C18:0, C18:2n6 and C18:3n3 contents. Compared with the experimental diet, the pigs fed the 218 

control diet had a lower C18:0 content, and higher C18:2n6 and C18:3n3 contents, which contributed to the higher 219 

total polyunsaturated fatty acids (PUFA), n3 and n6 PUFA contents in this cut (p<0.05). For the belly cut, only 220 

C18:0 content was affected by the dietary supplementations. Oleic acid (C18:1n9) is well recognized as the most 221 

predominant and important for cooked meat flavor development [43]. We observed that the dietary 222 

supplementations did not alter the C18:1n9 content in both the cuts. However, under the current experimental 223 

conditions, the alternation of C18:0, C18:2n6 and C18:3n3 contents might be related to the supplemented amino 224 

acids or chromium alone and their combined effects on the absorbing rate of these fatty acids from the feeding diets 225 

and/or activity amplification of fatty acid synthase that converts malonyl-CoA to palmitate and subsequently 226 

elongated to C18:0 by elongase enzyme in the de novo fatty acid synthesis pathway [1]. Also, the results indicating 227 

the decreased PUFA content of loin in the dietary supplementation group could be related to the decreased 228 

desaturation of saturated fatty acids (SFAs) into unsaturated fatty acids (UFAs) by the desaturase enzymes in the 229 

DFS pathway. Another possible mechanism responsible for the change of fatty acids composition by the dietary 230 

amino acids supplementation is the increased production of nitric oxide from these amino acids, which reduces the 231 

uptake of glucose by stimulating glucose-oxidation in muscle tissues, and subsequently reduces the de novo fatty 232 

acids synthesis [37]. In general, it was observed that dietary supplementations apparently showed a negligible effect 233 

on the fatty acids compositions of the pork. In agreement with our results, numerous studies have also found that 234 
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dietary amino acids or 200 ppm chromium picolinate supplementation do not alter total SFA and UFA contents in 235 

LD muscles of growing-finishing pigs [19,44].  236 

Flavor volatile composition  237 

The concentration of aroma volatiles of cooked loin and belly samples are presented in Table 7. It is well recognized 238 

that aroma flavor sensed by smell buds is a very important eating quality trait [45,46]. The aroma flavor of meat is 239 

composed of a variety of volatiles which are generated as a result of thermal oxidation of lipids, Maillard reaction, 240 

and the interaction between lipid-thermally oxidized products with the products of Maillard reaction [45,47]. Under 241 

the current analytic conditions, a total of forty-four aroma volatiles included: 18 aldehydes, 8 alcohols, 3 ketones, 4 242 

sulfur-and nitrogen-containing compounds, 5 pyrazines and 5 hydrocarbons, were detected from the loin and belly 243 

cuts. We observed that the dietary supplementations showed a greater effect on the aroma volatiles composition of 244 

loins rather than on those of the belly cut. With regards to aldehydes, the concentration of 4 aldehydes (hexanal, 245 

heptanal, E,2-hetenal and E,E,2,4-decadienal) as well as total aldehydes content in the loins were significantly 246 

influenced by the feeding diets while, only an aldehyde (benzaldehyde) in belly cut was affected. Aldehydes are 247 

mainly produced from the thermal oxidation of UFAs [48,49], and some of them are produced from the Maillard 248 

reaction [46]. Hexanal, heptanal and E,2-heptenal, are known to be the oxidation products of C18:2n6 [49]. These 249 

aldehydes, with a low odor detection threshold (0.003-0.005 ppm) and associated with green, grassy and harsh odors, 250 

are considered as the unpleasant compounds in cooked meat [47]. Interestingly, compared with the control group, 251 

the dietary supplementations decreased (p<0.05) the concentrations of these unpleasant aldehydes. This 252 

phenomenon may be explained by the decrease of PUFAs (e.g., C18:2n6) content of the meat (in case of loin cut) as 253 

the result of the dietary supplementations (Table 5). Similar to the current findings, Elmore et al. [50] stated that a 254 

small change in fatty acids of meat could result in an alteration in aroma volatiles of cooked meat. For the oleic acid-255 

derived aldehydes (e.g., octanal, nonanal and decanal) associated with desirable odors (e.g., fatty note), no effects of 256 

the dietary supplementations were observed. This is probably because of the C18:1n9 content that was similar in 257 

both the control and supplementation groups (Table 5).        258 

With regards to alcohols, the dietary supplementations did not affect this volatile class in the belly cut, and but 259 

reduced (p<0.05) the amount of 1-pentanol, 1-heptanol and total alcohols content in the loin. Alcohols are formed as 260 

a result of the fatty acids oxidation, and are not important contributors of cooked meat flavor because of their high 261 

odor threshold (0.5-4 ppm) [4]. Therefore, the lower alcohols content in the loin of pigs received the dietary 262 

supplementation could be related to its lower PUFAs (e.g., C18:2n6 and C18:3n3) content compared to the control 263 
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group (Table 5).  264 

Sulfur-and nitrogen-containing compounds, and pyrazines, as the Maillard reaction-derived products with 265 

desirable odor notes (meaty and roasty odor notes), are the most important contributors of cooked meat flavor 266 

[45,51]. Interestingly, the dietary supplementations led to an increase of total sulfur-and nitrogen-containing 267 

compounds as well as pyrazines content in both the cuts. The increases of sulfur-and nitrogen-containing 268 

compounds as well as pyrazines contents in the cooked meat of pigs received the dietary supplementations may be 269 

related to the fact that: (i), higher availability of amino acids (from supplemented amino acids) in fresh meat, 270 

produced a higher amount of intermediated products (e.g., ammonia formed in the Strecker reaction during cooking) 271 

which interact with lipid-derived aldehydes in the later stages of Maillard reaction to yield these compounds [47], 272 

and (ii), the lower amount of unpleasant aldehydes (hexanal and heptanal produced from C18:2n6) elevated the 273 

formation of pyrazines, and sulfur-and nitrogen-containing compounds [49]. Regarding this, Elmore et al. [48] also 274 

noted that many of Maillard reaction-derived flavor volatiles are not formed or are formed at lower level when a 275 

higher PUFA content is present. Frank et al. [52] found that number and quantity of Maillard compounds (e.g., 276 

pyrazines) in meat increased with increasing IMF content. In the present study, the pigs received the dietary 277 

supplementations had a higher IMF content as aforementioned (Table 3). 278 

Overall, although the WHD is known as a novel pig breed with a slow growth rate compared to the other 279 

commercial pig breeds [15], the slaughter weight of WHD pigs was similar to that of the commercial pig breeds 280 

when finished at a similar age [33]. As earlier mentioned, a significant proportion of worldwide consumers has a 281 

strong preference for highly-marbled pork [5], the marbling degree or IMF level, therefore, has become a major 282 

interest to the meat industry [1]. In the present study, WHD meat presented a considerably higher IMF content 283 

compared to that of other commercial breeds [19,53]. This suggests that WHD pig, with a good potential of growth 284 

and IMF accumulation, could be considered as an outstanding breed for production of high-quality meat to fulfil the 285 

consumer’s preference. On the other hand, an excessive fat level may result in a more trimming loss and high risk of 286 

rejection by consumers [54]. In the present study, the dietary supplementation significantly reduced the fat 287 

deposition in the belly cut. This implies that dietary amino acids and chromium supplementation emerged as an 288 

effective nutritional intervention for improving IMF and lessening the undesirable fat (e.g., subcutaneous fat) 289 

deposition in pork carcasses.  290 

Conclusion 291 

In this study, the influences of combined dietary supplementations with amino acids and chromium on the carcass 292 
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traits and composition, and meat quality of finishing WHD pigs were investigated. The dietary supplementations did 293 

not affect the live weight, carcass weight and total meat yield. As expected, the dietary supplementations 294 

considerably increased the IMF level of loin and ham cuts, and simultaneously reduced the fat content of belly cut. 295 

The dietary supplementations also did not cause any defect in quality such as pH, water holding capacity and color 296 

traits of the meat. Noticeably, the dietary supplementations significantly reduced the amount of PUFA-derived 297 

unpleasant aldehydes, and increased the number and quantity of Maillard reaction-derived aroma volatiles 298 

associated desirable odor notes (meaty and roasty odor notes). It may be said that the combined dietary 299 

supplementations with amino acids and chromium effectively improved the meat quality by increasing the IMF 300 

content, and producing more number and amount of pleasant aroma volatiles. Insights into the effects of dietary 301 

supplementation with amino acids and chromium on the tastes-related components and eating properties will be 302 

investigated in future study. 303 

304 
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Table 1. Chemical composition of feeding diets 453 

Items 
Growing phase Growing-finishing phase 

CD ED CD ED 

Ingredient (%) 

Corn, Yellow Dent 64.17 63.93 69.00 68.90 

Soybean Meal, Solvent Extracted 19.10 19.10 10.80 10.80 

Wheat, Soft Red 8.00 8.00 15.00 15.00 

Molasses, Sugarcane 3.00 3.00 2.00 2.00 

Beef Tallow 2.00 2.00 0.10 0.10 

Calcium phosphate (dicalcium) 1.20 1.20 0.75 0.75 

L-Lysine-HCl 0.61 0.68 0.57 0.57 

L-Threonine 0.13 0.16 0.11 0.11 

DL-Methionine 0.10 0.13 0.02 0.02 

L-Isoleucine - 0.02 - - 

L-Tryptophan 0.18 0.24 0.20 0.20 

L-Valine 0.08 0.11 0.03 0.03 

Limestone, groundc 0.73 0.73 0.72 0.72 

Sodium chloride 0.30 0.30 0.30 0.30 

Vit min mix 0.30 0.30 0.30 0.30 

phytase 0.05 0.05 0.05 0.05 

choline 0.05 0.05 0.05 0.05 

Chromium Picolinate - - 0.00 0.10 

Total 100.00 100.00 100 100 

Metabolic energy, Kcal/kg 3,304 3,308 3,313 3,309 

Crude protein, % 15.49 15.66 12.98 12.97 

The amino acids level in the feeding diets was made based on the Standardized Ileal Digestability (SID) (NRC, 454 

2012). CD (control diet): a basal diet; ED (experiment diet): a basal diet + 4% lysine, isoleucine, methionine, 455 

threonine, valine and tryptophan during growing phase, and a basal diet supplemented with 0.1% chromium 456 

picolinate during finishing phase. 457 

 458 

 459 

 460 

 461 

 462 

 463 
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Table 2. Carcass traits and meat yield of Woori heukdon by feeding diets 464 

Items CD ED 

Slaughter weight (kg) 109.30±3.20 109.60±2.00 

Hot carcass weight (kg) 85.68±1.96 85.40±2.11 

Cold carcass weight (kg) 83.80±4.88 83.40±5.67 

Back-fat thickness (mm) 28.78±0.54 27.75±0.66 

Trimable fat (kg) 17.50±0.12 16.69±0.10 

Bone (kg) 8.49±0.68 8.43±0.57 

Skin (kg) 6.31±0.12 6.34±0.13 

Meat yield 

Tenderloin (kg) 1.09±0.27 1.01±0.20 

Loin (kg) 7.16±0.54 7.12±0.48 

Shoulder butt (kg) 4.46±1.16 4.36±1.33 

Picnic (kg) 9.61±0.83 9.35±0.77 

Ham (kg) 15.64±0.29 15.36±0.21 

Belly (kg) 13.28±2.54 13.25±2.19 

Rib (kg) 2.52±0.41 2.35±0.42 

Total meat yield (kg) 53.76±0.53 52.80±0.58 

CD (control diet): pigs were fed a basal diet; ED (experiment diet): pigs were fed a basal diet + 4% lysine, 465 

isoleucine, methionine, threonine, valine and tryptophan during growing phase and supplemented with 0.1% 466 

chromium picolinate during finishing phase. 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 
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Table 3: Proximate composition of WHD meat by feeding diets 478 

Cut Composition CD ED 

Loin 

Fat (%) 4.49±1.96b 6.04±3.05a 

Moisture (%) 71.94±1.24 71.06±1.91 

Protein (%) 22.15±1.09a 21.22±1.68b 

Collagen (%) 0.26±0.05 0.28±0.04 

Ham 

Fat (%) 2.40±1.00b 3.34±1.70a 

Moisture (%) 74.15±0.99 73.72±1.43 

Protein (%) 21.98±0.78a 21.19±1.15b 

Collagen (%) 0.24±0.04 0.24±0.04 

Belly 

Fat (%) 47.48±7.84a 41.05±6.71b 

Moisture (%) 43.68±5.80b 47.67±5.36a 

Protein (%) 10.80±1.55 11.03±2.09 

Collagen (%) 1.58±0.33 1.30±0.36 

Means within a row with different superscripts (a,b) are significantly different (p< 0.05). 479 

CD (control diet): pigs were fed a basal diet; ED (experiment diet): pigs were fed a basal diet + 4% lysine, 480 

isoleucine, methionine, threonine, valine and tryptophan during growing phase and supplemented with 0.1% 481 

chromium picolinate during finishing phase. 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 
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Table 4. Meat quality traits WHD meat by feeding diets 495 

Cut 

Cooking loss (%) pH Shear force (kgf) 

CD ED CD ED CD ED 

Loin  24.06±6.33 22.18±4.14 5.57±0.07 5.56±0.07 2.07±0.13 2.14±0.11 

Ham  27.57±3.26 27.23±17.50 5.65±0.09 5.68±0.14 3.41±0.37 3.86±0.21 

Belly  9.33±1.86a 7.16±1.93b 6.21±0.14 6.20±0.15 NM NM 

Means within a row with different superscripts (a,b) are significantly different (p< 0.05). 496 

NM: Not measured. 497 

CD (control diet): pigs were fed a basal diet; ED (experiment diet): pigs were fed a basal diet + 4% lysine, 498 

isoleucine, methionine, threonine, valine and tryptophan during growing phase and supplemented with 0.1% 499 

chromium picolinate during finishing phase. 500 

 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

 515 

 516 

 517 

 518 

 519 

 520 

 521 

 522 

 523 
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Table 5. Color traits of WHD meat by feeding diets 524 

Cut 

L* (Lightness) a* (redness) b* (Yellowness) 

CD ED CD ED CD ED 

    

Loin  54.81±3.66 54.61±4.37 7.98±1.58 7.82±1.59 4.81±1.61 4.02±1.32 

Ham  49.17±2.51 48.82±2.85 11.53±1.22 11.95±1.36 4.37±1.08 4.37±0.96 

Belly  46.61±2.99 45.58±3.39 16.28±1.57 16.24±1.66 5.12±0.88 5.31±1.45 

CD (control diet): pigs were fed a basal diet; ED (experiment diet): pigs were fed a basal diet + 4% lysine, 525 

isoleucine, methionine, threonine, valine and tryptophan during growing phase and supplemented with 0.1% 526 

chromium picolinate during finishing phase. 527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

 548 

ACCEPTED



23 

 

Table 6. Fatty acid profiles of WHD meat by feeding diets 549 

Items  
Loin Belly 

CD ED CD ED 

C14:0 1.50±0.23 1.50±0.18 1.42±0.19 1.48±0.22 

C16:0 31.40±1.87 31.11±1.50 30.23±1.64 30.30±1.58 

C16:1n7 2.65±1.00 3.05±0.56 2.11±0.43 2.41±0.49 

C18:0 14.62±1.54b 16.11±1.29a 14.49±1.44b 15.64±1.08a 

C18:1n9 42.20±2.19 41.91±1.68 42.70±2.53 41.80±1.27 

C18:1n7 0.12±0.03 0.12±0.03 0.11±0.02 0.12±0.02 

C18:2n6 6.36±2.25a 5.04±1.06b 7.73±0.91 7.04±1.59 

C18:3n6 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

C18:3n3 0.23±0.11a 0.15±0.06b 0.27±0.07 0.24±0.09 

C20:1n9 0.67±0.16 0.74±0.07 0.73±0.08 0.75±0.11 

C20:4n6 0.19±0.06 0.20±0.07 0.15±0.05 0.16±0.03 

C22:4n6 0.05±0.01 0.05±0.01 0.05±0.01 0.05±0.01 

SFA 47.52±3.18 48.72±1.90 46.13±2.85 47.42±2.03 

UFA 52.48±3.18 51.28±1.90 53.87±2.85 52.58±2.03 

MUFA 45.63±2.86 45.82±1.53 45.66±2.63 45.09±1.29 

PUFA 6.85±2.37a 5.46±1.09b 8.21±0.98 7.49±1.67 

n3 0.23±0.11a 0.15±0.06b 0.27±0.07 0.24±0.09 

n6 6.62±2.28a 5.30±1.05b 7.94±0.95 7.25±1.60 

n6/n3 30.93±7.24 40.76±2.44 31.67±1.76 33.08±1.55 

MUFA/SFA 0.97±0.13 0.94±0.07 1.00±0.12 0.95±0.06 

PUFA/SFA 0.15±0.06a 0.11±0.03b 0.18±0.03 0.16±0.04 

Means within a row with different superscripts (a,b) are significantly different (p< 0.05). 550 

SFA, saturated fatty acid; UFA, unsaturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated 551 

fatty acid. 552 

CD (control diet): pigs were fed a basal diet; ED (experiment diet): pigs were fed a basal diet + 4% lysine, 553 

isoleucine, methionine, threonine, valine and tryptophan during growing phase and supplemented with 0.1% 554 

chromium picolinate during finishing phase. 555 

 556 

 557 

 558 
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Table 7. Concentration (µg/g) of aroma volatile compounds of WHD meat by feeding diets 559 

Compounds 
Retention 

time (min) 

Loin Belly  

IM*) 
CD ED CD ED 

Aldehydes 

2-Methyl pentanal 1.611 0.013±0.005 0.010±0.005 0.031±0.003 0.043±0.002 MS+STD 

2-Methyl propanal 1.867 0.004±0.000 0.003±0.000 0.003±0.000 0.003±0.000 MS+STD 

Butanal 1.994 0.001±0.000 ND 0.002±0.000 0.002±0.000 MS+STD 

3-Methyl butanal  2.435 0.009±0.000 0.007±0.000 0.005±0.000 0.010±0.002 MS+STD 

2-Methyl butanal  2.610 0.010±0.001 0.007±0.000 0.004±0.000 0.007±0.000 MS+STD 

Petanal 3.036 0.041±0.004 0.018±0.001 0.180±0.012 0.199±0.093 MS+STD 

Hexanal 5.654 0.673±0.093a 0.127±0.012b 2.381±0.231 2.745±0.265 MS+STD 

Heptanal 8.808 0.043±0.005a 0.017±0.009b 0.112±0.002 0.118±0.004 MS+STD 

E,2-Heptenal 10.291 0.002±0.000a 0.0001±0.000b 0.016±0.003 0.017±0.001 MS+STD 

Benzaldehyde 10.375 0.014±0.006 0.013±0.001 0.035±0.003b 0.052±0.001a MS+STD 

E,E-2,4-Decadienal 11.136 0.024±0.003a 0.007±0.000b 0.077±0.007 0.099±0.004 MS+STD 

Benzeneacetaldehyde 12.405 0.002±0.000 0.003±0.000 0.003±0.000 0.003±0.000 MS+STD 

E,2-Octenal 12.728 0.002±0.000 0.001±0.000 0.012±0.009 0.014±0.008 MS+STD 

Nonanal 13.712 0.038±0.003 0.022±0.009 0.078±0.004 0.085±0.003 MS+STD 

E,2-Nonenal 14.834 0.003±0.000 0.004±0.000 0.005±0.000 0.007±0.000 MS+STD 

Decanal 15.720 0.002±0.000 0.002±0.000 0.001±0.000 0.001±0.000 MS+STD 

E,E-2,4-Nonadienal 15.872 0.001±0.000 0.001±0.000 ND ND MS+STD 

E,2-Dodecenal 16.757 0.001±0.000 0.001±0.000 0.004±0.000 0.004±0.000 MS+STD 

2-Undecenal 18.527 0.001±0.000 0.001±0.000 0.002±0.001 0.002±0.000 MS+STD 

Total aldehydes 
 

0.882±0.086a 0.242±0.001b 2.944±0.139 3.409±0.149  

Alcohols 

1-Penten-3-ol 2.839 0.001±0.000 0.003±0.000 0.006±0.000 0.003±0.001 MS+STD 

1-Pentanol 4.601 0.026±0.005a 0.005±0.001b 0.140±0.005 0.130±0.004 MS+STD 

1-Hexanol 7.905 0.006±0.000 0.003±0.000 0.048±0.008 0.014±0.006 MS+STD 

1-Hexen-3-ol 8.083 ND 0.001±0.000 0.003±0.000 0.003±0.000 MS+STD 

1-Heptanol 10.668 0.008±0.000a 0.003±0.000b 0.018±0.001 0.018±0.001 MS+STD 

1-Octen-3-ol 10.892 0.012±0.001 0.003±0.000 0.034±0.003 0.030±0.001 MS+STD 

2-Ehyl-1-hexanol 12.072 0.004±0.001 0.003±0.000 0.008±0.001 0.011±0.001 MS 

1-Octanol 13.004 0.004±0.000 0.003±0.000 0.009±0.000 0.007±0.001 MS+STD 

Total alcohols 
 

0.060±0.003a 0.022±0.003b 0.263±0.020 0.214±0.005  
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Ketones 

2,3-Butanedione 1.940 0.001±0.000 0.001±0.000 ND 0.003±0.000 MS+STD 

2-Butanone 2.027 0.004±0.000 0.003±0.001 0.010±0.001 0.009±0.001 MS+STD 

2-Heptanone 8.507 0.009±0.001 0.006±0.000 0.017±0.001 0.014±0.005 MS+STD 

Total ketones 
 

0.013±0.006 0.010±0.005 0.027±0.007 0.024±0.006  

Sulfur and nitrogen-containing compounds 

Carbon disulfide 1.754 ND 0.005±0.000 ND 0.015±0.001 MS+STD 

Methional 8.912 0.001±0.000b 0.004±0.000a ND 0.020±0.005 MS+STD 

Dimethyl trisulfide 10.570 0.008±0.000 0.005±0.000 0.004±0.000 0.009±0.000 MS+STD 

2-Acethylthiazole 11.810 ND 0.006±0.001 ND 0.009±0.000 MS+STD 

Total sulfur and nitrogen 
 

0.006±0.000b 0.020±0.009a 0.005±0.000b 0.055±0.001a  

Pyrazines 

Methylpyrazine 6.377 0.003±0.000 0.003±0.001 0.001±0.000b 0.015±0.001a MS+STD 

2,5-Dimethylpyrazine 9.158 0.012±0.001 0.012±0.002 0.005±0.001 0.025±0.001 MS+STD 

2-Ethyl-6-

methylpyrazine 
11.357 0.0005±0.000b 0.001±0.000a 0.003±0.000 0.004±0.001 

MS 

3-Ethyl-2,5-

dimethylpyrazine 
13.187 0.003±0.000 0.004±0.000 0.008±0.002 0.008±0.000 

MS 

2,5-Dimethyl-3-

methylbutylpyrazine 
17.717 0.001±0.000 0.001±0.002 ND ND 

MS 

Total pyrazines 
 

0.014±0.002 0.020±0.002 0.005±0.001b 0.031±0.004a  

Hydrocarbons  

Toluene 4.546 0.001±0.000 0.001±0.000 0.004±0.000a 0.001±0.000b MS+STD 

Ethylbenzene 7.574 0.001±0.000 0.001±0.000 0.002±0.000 0.002±0.000 MS+STD 

1,3-Dimethylbenzene 7.815 0.006±0.001 0.006±0.001 0.008±0.001 0.007±0.001 MS 

2,4,6-Dimethyldecane 11.368 0.001±0.000 ND 0.006±0.000 0.003±0.000 MS 

2,6,6-Trimethylheptane 12.517 0.002±0.000 0.001±0.001 0.002±0.000 0.002±0.000 MS 

Total hydrocarbons 
 

0.010±0.005 0.008±0.005 0.017±0.009a 0.012±0.004b  

ND: Not detectable. 560 

*) IM: Identification method: by mass spectra (MS) from a library or external standards (STD). 561 

Means within a row with different superscripts (a,b) are significantly different (p< 0.05). 562 

CD (control diet): pigs were fed a basal diet; ED (experiment diet): pigs were fed a basal diet + 4% lysine, 563 

isoleucine, methionine, threonine, valine and tryptophan during growing phase and supplemented with 0.1% 564 

chromium picolinate during finishing phase. 565 
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 567 

 568 
Fig. 1. Representative images show: (A) Finishing-Woori heukdon (WHD) pigs fed the dietary supplementation 569 

before slaughter, (B) cross-sectioned loin of non-supplemented WHD pigs, and (C) cross-sectioned loin of 570 

supplemented WHD pigs.  571 
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