Table 2. Classification accuracies for the different machine learning models using optimal marker combinations

Method Model Accuracy Specificity Sensitivity Precision F1-score
RF DT 1.00 1.00 1.00 1.00 1.00
AB 1.00 1.00 1.00 1.00 1.00
SVM 1.00 1.00 1.00 1.00 1.00
QDA 1.00 1.00 1.00 1.00 1.00
RF 1.00 1.00 1.00 1.00 1.00
LDA 1.00 1.00 1.00 1.00 1.00
KNN 1.00 1.00 1.00 1.00 1.00
NB 1.00 1.00 1.00 1.00 1.00
AB DT 1.00 1.00 1.00 1.00 1.00
AB 1.00 1.00 1.00 1.00 1.00
SVM 1.00 1.00 1.00 1.00 1.00
QDA 1.00 1.00 1.00 1.00 1.00
RF 1.00 1.00 1.00 1.00 1.00
LDA 1.00 1.00 1.00 1.00 1.00
KNN 1.00 1.00 1.00 1.00 1.00
NB 1.00 1.00 1.00 1.00 1.00
DT, decision tree; AB, AdaBoost; SVM, support vector machine; QDA, quadratic discriminant analysis; RF, Random Forest; LDA, linear discriminant analysis; KNN, K-Nearest Neighbor; NB, Naïve Bayes.