Table 2. Classification accuracies for the different machine learning models using optimal marker combinations
Method | Model | Accuracy | Specificity | Sensitivity | Precision | F1-score |
RF | DT | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
AB | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
SVM | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
QDA | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
RF | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
LDA | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
KNN | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
NB | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
AB | DT | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
AB | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
SVM | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
QDA | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
RF | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
LDA | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
KNN | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
NB | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
DT, decision tree; AB, AdaBoost; SVM, support vector machine; QDA, quadratic discriminant analysis; RF, Random Forest; LDA, linear discriminant analysis; KNN, K-Nearest Neighbor; NB, Naïve Bayes.