Genome analysis of Lactococcus taiwanensis strain K_LL001 with potential cellulose degrading functions
Received: Aug 10, 2023; Revised: Sep 23, 2023; Accepted: Oct 10, 2023
Published Online: Oct 11, 2023
Abstract
<italic>Lactococcus taiwanensis </italic>starin K_LL001 was isolated from the gut of grasshopper (<italic>Oxya chinensis sinuosa</italic>). In this study, we presented the complete genome sequence of <italic>L. taiwanensis </italic>stain K_LL001. The genome of K_LL001 genome was composed of 1 circular chromosome without plasmids. The length of the whole genome was 2,018,259bp, guanin + cytosine (G±C) content (%) was 38.75%, with 2,021 predicted protein-coding sequences (CDS). The most abundant CAZyme class in <italic>L. taiwanensis</italic> strain K_LL001 was glycoside hydrolases (GH) class. GHs is the key enzymes involved in carbohydrate metabolism, and they catalyze the hydrolysis of glycosidic bonds in complex carbohydrates such as cellulose, hemicellulose, and starch. Moreover, <italic>L. taiwanensis</italic> strain K_LL001 has genes encoding enzymes which can catalyze the transformation of one glycoside to another. Overall, this study will contribute to a further understanding of <italic>L. taiwanensis </italic>strain K_LL001 at the genomic level and provide a theoretical basis for its future application in swine industry.