Modulation of microbial community and metabolism through Lactiplantibacillus argentoratensis AGMB00912 supplementation in weaning piglets
Abstract
Dietary supplementation effects with Lactiplantibacillus argentoratensis strain AGMB00912 (LA) on gut microbiota and metabolic functions of weaned piglets were investigated. Eight 25-day-old weaned piglets were evenly divided into a control group and an LA-supplemented group, with the LA group receiving 1.0 × 108 CFU/mL of LA daily for 10 days. Fecal samples taken on the 10th day were analyzed using 16S rRNA gene sequencing to assess microbial composition and metabolic function prediction. Supplementation with LA promoted a stable microbial environment by increasing the relative abundance of short-chain fatty acid-producing bacteria, including Faecalitalea, Catenibacterium, and Butyrivibrio, while reducing harmful genera like Treponema and Campylobacter. Administration of LA significantly influenced the metabolic activity of the microbial community, particularly by upregulating carbohydrate metabolism pathways, which enhanced the capacity for short-chain fatty acid production. This shift in microbial metabolism also extended to pathways involved in the biosynthesis of amino acids, lipids, cofactors, and vitamins, indicating an improved capacity for microbial-driven nutrient assimilation and utilization. Furthermore, LA supplementation promoted the biosynthesis of antimicrobial non-ribosomal peptides within the microbiome, crucial for inhibiting the growth of pathogenic microorganisms and maintaining microbial balance. The modulation of microbial metabolism is also predicted to reduce glycan degradation and increase peptidoglycan biosynthesis, contributing to enhanced gut barrier function and a more regulated immune response. These metabolic changes within the microbial community are predicted to stabilize the gut microbiota, providing enhanced disease resistance and supporting the overall health and growth of weaned piglets.